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In the present paper we consider the numerical solution of systems of general
nonlinear hyperbolic conservation laws on unstructured grids by means of the residual
distribution method. We propose a new formulation of the first-order linear, optimal
positive N scheme, relying on a contour integration of the convective fluxes over the
boundaries of an element. Full conservation is achieved for arbitrary flux functions,
while the robustness and the monotone shock capturing of the original N scheme is
retained. The new variant of the N scheme is combined with the conservative second-
order linear LDA scheme to obtain a nonlinear second-order monotone B scheme.
The performance of the new residual distribution schemes is evaluated on problems
governed by the Euler equations. As an application to a more complex system of
conservation laws lacking an exact conservative linearization, we solve the ideal
magnetohydrodynamics equations in two spatial dimensions. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

In the last decade a class of multidimensional upwind fluctuation splitting or residual
distribution (RD) schemes has emerged for the solution of systems of conservation laws
on unstructured grids composed of linear finite elements. The matrix variant of the RD
method was developed by van der Weide et al. [11] and further improved by Abgrall [1, 2].
It combines Godunow upwinding techniques with compact stencils and space-continuous
finite-element methods. Matrix RD schemes have been used for the numerical approxi-
mation of a variety of steady and unsteady flows governed by the Euler or Navier–Stokes
equations. Some of the latest developments can be found in [1–7, 10, 14, 18, 19].
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In the framework of the RD method the existence of a robust conservative monotone
shock capturing first-order scheme is an essential building block for the development of
monotone, second or higher order nonlinear schemes. The N scheme (narrow) [10, 11] is the
optimal linear monotone RD scheme, in the sense that it has the smallest cross-diffusion in
its class [15]. Since it operates on the quasilinear form of the governing equations, care has
to be taken to maintain the conservative property of this scheme at the discrete level. If the
components of the flux vector can be expressed as linear or quadratic functions in terms of a
properly chosen parameter vector, then exact conservation of the N scheme can be achieved
by applying the Roe–Struijs–Deconinck (RSD) linearization [9]. However, in several other
applications, such as the ideal magnetohydrodynamics or the two-phase flow equations, the
physics of the problem is described by more complex fluxes or thermodynamics, precluding
the simple extension of the RSD linearization. Since the conservation of the convective
fluxes is based on a conservative linearization in the schemes of van der Weide et al. and
Abgrall, in this paper we refer to them as linearization-based residual distribution, orLRD,
schemes.

Csı́k et al. [4, 7] applied the RD method to the numerical solution of the ideal magne-
tohydrodynamics (MHD) equations governed by a flux function written as a polynomial
of degree three in terms of a specific parameter vector. Since no conservative linearization
exists for this system, the authors proposed applying a conservation correction technique
involving the computation of the conservation error δ�, given by the difference between the
cell residual based on a conservative contour integration and the nonconservative quasilinear
form. The conservation error was corrected by distributing δ� with a central or an appro-
priate upwind scheme. Although exact conservation was recovered, the resulting monotone
schemes lost their intrinsic robustness, especially in terms of convergence.

The problem of discrete conservation in the RD framework has also been addressed
by Abgrall and Barth [2]. They proposed a nonconservative variant of the N scheme in
terms of the entropy variables of the system. The nonconservative integrals appearing in
the quasilinear form are approximated by an appropriate adaptive quadrature procedure
such that the weak solutions are still obtained in the limit of grid refinement. Although the
method is computationally more demanding than the original schemes due to the process-
ing of the adaptive quadrature in the entropy variables, it provides a systematic framework
for constructing schemes supported by stability analysis via wave decomposition. How-
ever, the theory of the method heavily relies on the symmetric formulation of the system.
Unfortunately, the ideal MHD equations in strong conservation form are not symmetriz-
able. In order to obtain the set of symmetrizable ideal MHD equations a nonconservative
source term proportional to the divergence of the magnetic field has to be added to the
conservative system, rendering the discrete governing equations themselves nonconserva-
tive, unless the magnetic field is solenoidal at the discrete level. As a consequence, in the
case of ideal MHD the method described in [2] may lead to incorrect jumps accross strong
shocks.

In this paper we introduce a new form of the system N scheme of van der Weide et al.
that guarantees discrete conservation for any nonconservative linearization of the system.
While the multidimensional upwinding of the convective residual is still based on the
quasilinear form of the governing equations, exact conservation for arbitrary flux functions
is incorporated via simple flux contour integrals along element boundaries, such that the
underlying robustness and accuracy of the basic schemes is retained. These schemes are
referred to as contour-integration-based residual distribution or CRD schemes.
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The structure of this paper is the following. In Section two we recall the basic principles
of the (linearization based) LRD method for systems of equations in two and three spatial
dimensions. The new conservative formulation of the N scheme is described in the third
section. In Section four the (contour integration based) CRD method is evaluated for the
Euler equations of inviscid gas dynamics. We present computational results containing
strong shocks to demonstrate the robustness of the schemes and the monotonicity of the
solution. Comparison is made to the results obtained by the LRD method both for a
conservative and nonconservative linearization. In Section five the CRD method is applied
for the solution of the ideal MHD equations to demonstrate its generality. In the last section
we give a concluding summary and we point out the potential fields of application of the
proposed CRD approach.

2. RESIDUAL DISTRIBUTION DISCRETIZATION

We consider the numerical solution of a system of q conservation laws in d spatial
dimensions,

∂U

∂t
+ ∇ · F = 0, (1)

where U (x, t) is the state vector with q components containing the conserved quantities,
F(U ) is the q × d flux vector with components Fj ( j = 1, . . . , d), and x is the spatial
position vector with coordinates x j ( j = 1, . . . , d). Writing the Jacobians A j = ∂ Fj/∂W
in terms of a parameter vector W (U ) connected to U via transformation T = ∂U/∂W , the
quasilinear form of Eq. (1) is

T
∂W

∂t
+

d∑
j=1

(
A j

∂W

∂x j

)
= 0. (2)

In the framework of the RD method the solution is approximated in the piecewise linear
finite-element space over an arbitrary unstructured grid,

W h(x, t) =
N∑

i=1

Wi (xi, t)ωh
i (x), (3)

where N is the total number of nodes in the mesh, Wi (xi, t) is the time-dependent nodal
value of the solution at node i , and ωh

i (x) is the piecewise linear shape function equal to
unity at node i and vanishing outside of the elements sharing i as a vertex. Considering the
number of degrees of freedom in two and three spatial dimensions, the linear elements are
triangles and tetrahedra, respectively.

Integration of Eq. (2) over a linear element E with the approximation W h yields the
definition of the total fluctuation or the cell residual �E in a discrete form:

�E =
∫
E

d∑
j=1

(
A j

∂W

∂x j

)
dV . (4)
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The construction of the multidimensional upwind RD schemes requires the cell residual
to be approximated in the form

�E =
[

d∑
j=1

( Ā j x̂j)

]
·
∫
E

∇W h dV, (5)

where x̂j is the unit vector in the j th coordinate direction and Ā j = A j (W̄ ) is the analytic
Jacobian taken in an averaged state W̄ . In smooth flows the quasilinear form (5) can be
used without additional constraints to give a proper description of the flow field. However,
if the solution is discontinous, conservation of the cell residual is an additional constraint
in order to obtain proper jumps accross discontinuities, as discussed in Section 2.2.

Since W h has linear variation in element E by assumption (3), exact evaluation of the
integral term in Eq. (5) yields

�E =
[

d∑
j=1

( Ā j x̂j)

]
· 1

d

d+1∑
i=1,i∈E

Wi ni =
d+1∑

i=1,i∈E

Ki Wi , (6)

where ni is the inward-pointing normal vector of the face opposite to i , scaled with the
area of the face, and index i goes through the local nodes of the element. Matrix Ki is the
following linear combination of the Jacobians:

Ki = 1

d

[
d∑

j=1

( Ā j x̂j)

]
· ni, Ā j = A j (W̄ ). (7)

Due to the hyperbolic nature of the governing Eq. (1), matrix Ki has q real eigenvalues
and a complete set of linearly independent eigenvectors. Diagonalization of matrix Ki yields

Ki = Ri�i Li , (8)

where the columns of Ri are the right eigenvectors, Li = R−1
i , and �i is a diagonal matrix

containing the eigenvalues of Ki . Introducing �±
i = (�i ± |�i |)/2, the so-called multidi-

mensional upwind parameters are defined as

K +
i = Ri�

+
i Li and K −

i = Ri�
−
i Li . (9)

Following the solution procedure of the RD approach, �E is decomposed in all of the
elements into subresiduals which are distributed to the nodes of E . The distribution function
�E

i defines the subresidual, i.e., the fraction of the total cell residual distributed to node i
in element E . For consistency it is required that the sum of the distribution functions in an
element be the total cell residual �E :

�E =
d+1∑

i=1,i∈E

�E
i . (10)

The multidimensional upwind property of the RD schemes implies that no residual is
sent to node i in element E if all the eigenvalues of the local matrix Ki are nonpositive
[10, 11]; i.e.,

�E
i = 0 if K +

i = 0̂, (11)
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where 0 and 0̂ stand for the null vector and null matrix, respectively. Assembling all of the
contributions �E

i from the elements to the nodes, the semidiscrete form of the governing
equation at node i takes the form

dUi

dt
= − 1

Vi

∑
E,i∈E

�E
i , (12)

where Vi is the volume of the median dual of node i equal to 1/(d + 1) times the total
volume of all the linear elements sharing node i as a vertex.

The simple explicit forward Euler discretization of the temporal derivative at node i leads
to the following discrete equation:

U n+1
i = U n

i − �ti
Vi

∑
E,i∈E

�E
i . (13)

In the update scheme (13) superscripts n and n + 1 label the solution at the corresponding
time levels and �ti is the local time step at node i limited by considerations of positivity
and stability. First-order temporal accuracy can be achieved by global time stepping; i.e.
�ti = �t for ∀i = 1, . . . , N , where �t = min(�tk)k=1,...,N . For steady state problems the
accuracy of the transient solution is not a concern; therefore local time stepping is applied
to accelerate the iterative procedure.

The definition of�E
i determines the properties of differentRD schemes. Important design

principles are positivity (P) and linearity preservation (LP). In practical computations a
P scheme captures shocks in a monotonic manner, while LP schemes produce a second-
order-accurate solution in steady smooth flows [1, 4, 7, 10]. In this paper we consider a
linear P scheme, a linear LP scheme, and a nonlinear P and LP scheme, which is obtained
by applying a blending of the distribution functions of the linear P and LP schemes. Some
more details on property P are given in Section 2.1.

2.1. Positivity of the RD Schemes

An important design criterion in the construction of numerical discretization techniques
is the ability of the schemes to produce monotone solutions across discontinuities and steep
gradients in the sense that spurious oscillations are not generated in the pre- and postshock
domains. In the context of cell vertex RD schemes the concept of positivity (P) has been
considered as a generalization of the TVD principles for Godunov schemes to unstructured
grids composed of linear finite elements. The notion of positivity as a monotonicity concept
has also been used in a pure finite-volume context, where it is known as the LED (local
extremum diminishing) property [13].

Let us consider a scalar conservation law, with un
j being the unknown nodal quantity at

time level n. New extrema are not generated by the scheme if the discrete solution at level
n + 1 is obtained as a convex sum of the solution at level n on a compact stencil surrounding
node j :

un+1
j =

N∑
i=1

αi u
n
i , where 0 ≤ αi ≤ 1 and

N∑
i=1

αi = 1. (14)
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The class of RD schemes satisfying Eq. (14) under a CFL type condition is called positive.
The concept of monotonicity based on positivity or LED is valid for scalar equations only.
For systems of equations a relatively simple intuitive extension of the corresponding scalar
conditions is maintained in practice, leading to the system variant of the schemes, which
yield oscillation-free results [1, 10, 11]. Recently, Abgrall and Barth [2] showed satisfaction
of a discrete entropy inequality for a nonconservative variant of the system N scheme of van
der Weide et al. [11], retaining the correct weak solutions in the limit of mesh refinement
under certain assumptions. The authors show that their scheme can be used for general
first-order conservation laws equipped with an entropy inequality.

2.2. Conservation and Roe–Struijs–Deconinck Linearization

Equation (4) can be equivalently written in the form of a conservative contour integral
along the boundary ∂ E of the element by using Gauss’ theorem,

�E =
∮
∂ E

F(W h) · n d S, (15)

where n is the outward-pointing unit normal vector of surface element d S. In order to
capture shocks with proper jump relations, the underlying discretization of �E has to be
conservative; i.e., at the discrete level it has to be equivalent to the computation of the contour
integral of the fluxes along the boundaries ∂ E of element E according to a chosen integration
rule in Eq. (15). This property is essential for canceling internal fluxes if Eq. (12) is summed
up for all of the nodes. The standard way to achieve the conservation of the fluxes is to define
an appropriate averaged state W̄ such that Eqs. (15) and (5) yield identical approximation of
�E . This procedure is called conservative linearization and the corresponding conservative
schemes are the linearization-based residual distribution, or LRD, schemes.

The main difficulty in the solution procedure of general nonlinear conservation laws by
the LRD method lies in the fact that the construction of P schemes requires the eigenvalue
decomposition of the quasilinear form, and hence it strongly relies on the existence of a
conservative linearization. In general it is not possible to generate a constant state W̄ such
that Eqs. (5) and (15) are identical at the discrete level. Indeed, this implies

Ā j = A j (W̄ ) = 1

V E

∫
E

A j (W h) dV, ∀ j ∈ [1, . . . , d], (16)

where V E is the volume of element E . Only when the components of the flux vector F are
at most quadratic functions of a properly chosen parameter vector W does the Roe–Struijs–
Deconinck (RSD) linearization [9] gives exact satisfaction of Eq. (16), thus preserving exact
conservation of the convective fluxes. In this case the corresponding linearized state W̄ is a
simple arithmetic average of the nodal values:

W̄ = 1

d + 1

d+1∑
i=1,i∈E

Wi . (17)
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2.3. The Linear N Scheme

The linear N scheme (narrow) satisfies the system generalization of property P [1, 11].
It resolves discontinuities in a monotonic manner and its accuracy is at most first order. The
distribution function of the N scheme is

�N
i = K +

i (Wi − Win), K +
i = K +

i (W̄ ). (18)

State Win is defined by

Win = N̂
d+1∑

i=1,i∈E

K −
i Wi , K −

i = K −
i (W̄ ), (19)

where

N̂ =
(

d+1∑
i=1,i∈E

K −
i

)−1

, K −
i = K −

i (W̄ ). (20)

The inverse matrix N̂ does not exist in certain cases, e.g., when the Euler equations are
linearized in state W̄ corresponding to a stagnation point. However in Ref. [1] it is proven
that for a linearized symmetrizable system, K +

i N̂ always has meaning and the N scheme
is always well defined. Substituting expression (18) into constraint (10), we obtain

d+1∑
i=1,i∈E

�N
i =

d+1∑
i=1,i∈E

Ki Wi , Ki = Ki (W̄ ), (21)

indicating that the LRD form of the N scheme is conservative only if the linearized state
W̄ satisfies Eq. (16).

2.4. The Linear LDA Scheme

The distribution functions corresponding to the linear nonmonotone LP schemes can be
cast into the compact form

�E
i = βE

i �E , (22)

where βE
i is the cell-wise constant distribution matrix satisfying

d+1∑
i=1,i∈E

βE
i = Î , (23)

with Î being the unit matrix. If �E is computed independently of βE
i by using an appropriate

conservative contour integration of the fluxes, satisfaction of constraint (23) guarantees the
conservative property of the linear LP schemes for any choice of the linearized state W̄ .

The LDA scheme (low-diffusion A) with property LP is defined by

βLDA
i = −K +

i N̂ , K +
i = K +

i (W̄ ), (24)

where matrices K +
i and N̂ can be computed by using any linearization.
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We note that the accuracy of any RD scheme satisfying property LP (such as the LDA
scheme) can be increased to third order [3, 14, 18, 19] by performing a more accurate
approximation of the cell residual based on a nonlinear finite-element representation of the
solution.

Just like the N scheme, the LDA scheme is well posed for linearized symmetrizable
systems even if matrix N̂ does not exist [1].

2.5. The Nonlinear B Scheme

A practical high-resolution scheme has to be both monotone (P) and at least second
order (LP). Such a scheme is necessarily nonlinear [20] and can be obtained by applying a
proper blending of the distribution functions of a linear P and LP scheme. The distribution
function of the B scheme (blended) is defined as

�B
i = �̂�N

i + ( Î − �̂)�LDA
i , (25)

where �̂ is a diagonal nonlinear blending matrix [1, 4, 7, 10] given by

�k,k =
∣∣�E

k

∣∣∑d+1
j=1, j∈E

∣∣�N
j,k

∣∣ . (26)

In expression (26) index k = [1, . . . , q] refers to the kth equation of the system; i.e., �E
k

and �N
j,k are the kth component of vectors �E and �N

j , respectively. If the linear P and
LP schemes are conservative, then the B scheme satisfies Eqs. (15) and (10), justifying
the importance of a conservative N scheme. We note that other definitions of the blending
matrix exist, e.g., based on the considerations of entropy stability proposed by Abgrall [1].

3. CONSERVATIVE CONTOUR-INTEGRATION-BASED N SCHEME

In order to construct a conservative form of the N scheme for general nonlinear con-
servation laws, we propose to replace Eq. (19) for the computation of state Win by the
expression

Win = −N̂

(
d+1∑

i=1,i∈E

K +
i Wi − �E

)
, K +

i = K +
i (W̄ ), (27)

where �E is the cell residual computed in a conservative manner according to a chosen
integration rule in Eq. (15) while K +

i and N̂ are based on any choice of the linearized state
W̄ . By summing up Eq. (18) over the nodes of the cell, it is straightforward to verify that
the resulting N scheme is conservative according to Eqs. (15) and (10). In practice �E

is calculated from Eq. (15) either approximately by Simpson’s rule or exactly, based on
assumption (3).

In principle, state W̄ can be defined by any linearization, since it is only used for the
approximate multidimensional upwinding of the convective residual �E . Thus, in practice
we follow considerations of simplicity and efficiency. If an exact RSD linearization is
applied for a given flux vector F in terms of parameter vector W , then Eq. (27) reduces to
(19).
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Since the conservative property of the new form of the N scheme is based on the contour
integration of the fluxes along the boundary of an element, we refer to this formulation as
the contour-integral-based residual distribution, or CRD, version of the N scheme.

Just as in the case of the standard LRD N scheme combined with RSD linearization,
exact positivity of the components of the solution W obtained by the new CRD N scheme
cannot be proven. However, its close formal relation to the original schemes indicates
that the satisfaction of a CFL-condition-based time-step limitation yields oscillation-free
solutions across discontinuities while preserving the extreme robustness and monotonicity
of the original LRD N scheme. Indeed, in Section 4 we present numerical experiments to
demonstrate that all the positive CRD schemes based on a nonconservative linearization
and definition (27) retain monotone shock capturing property in the presence of strong
steady and unsteady shocks.

4. NUMERICAL RESULTS FOR THE EULER EQUATIONS

In order to demonstrate the robustness and the monotone shock capturing of the CRD
schemes based on the new formulation of the N scheme, we present several test computations
containing strong steady and unsteady shocks in two spatial dimensions. First we evaluate
the performance of the CRD schemes by solving the Euler equation

∂

∂t


 ρ

ρv
E


+ ∇ ·




ρv

ρvv + Î p

v(E + p)


 = 0, (28)

where ρ is the fluid density, v is the velocity vector, p is the thermal pressure, and E is the
total energy density defined by

E = p

γ − 1
+ 1

2
ρv · v. (29)

For the Euler equations the conservative RSD linearization [9] is based on the Roe
parameter vector:

W = √
ρ[1, vx , vy, (E + p)/ρ]T and W̄ = 1

d + 1

d+1∑
j=1, j∈E

W j . (30)

In the CRD schemes the linearization of the Jacobians can be done in any set of variables,
and in the present results the following set of primitive variables is employed:

PEuler = [ρ, vx , vy, p]T . (31)

As a consequence of this choice, matrices Ki are always diagonalizable with real eigen-
values in the mean state P̄ if the pressure and density are positive at all of the vertices of
the element involved in the linearization.

The reference solution for the steady Euler equations is computed by the LRD schemes
based on the existing RSD linearization, which is conservative and positive by construction.
We also show the nonconservative solution for the N scheme obtained by the linearization
done in the primitive variables (31) in combination with the original definition (19) of Win.
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FIG. 1. Part of the unstructured grid used in the scramjet computation. The full grid contains 7,056 nodes and
13,383 elements.

The value of the ratio of specific heats is γ = 1.4 and 5/3 in the steady and unsteady
computations, respectively.

4.1. Scramjet Inlet

In this problem we consider a flow field involving steady oblique reflecting shocks. At the
supersonic inlet of the scramjet the Mach number is M = 3.6, the top boundary corresponds
to a symmetry line, the bottom boundary consists of an inviscid wall, and the outlet flow
at the right is still supersonic. The geometry of the grid is the same as the one used in
Ref. [15]. Figure 1 shows a detail of the mesh containing 7,056 nodes and 13,383 elements in
total.

The solution computed by the CRD N scheme and B scheme based on the linearization
in the primitive variables (31) is given in Fig. 2. Both solutions show a good prediction of
the compression of the flow through the series of shocks reflecting between the symmetry
line and the wedge. The higher resolution of the B scheme is clear, while both solutions
are monotone. The distribution of Mach number and pressure along the symmetry line is
shown in Figs. 3 and 4. The solid line and the symbols correspond to the reference solution
(original LRD scheme with RSD linearization) and the numerical values obtained by the

FIG. 2. Mach number contour lines in the scramjet computed by the first-order CRD N scheme (top) and the
second-order CRD B scheme (bottom).
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FIG. 3. Mach number and pressure along the symmetry axes of the scramjet computed by the first-order N

scheme. Solid lines and symbols correspond to the reference LRD and the new CRD method, respectively.

new CRD schemes, respectively. One can observe that the squares match the solid line
closely without spurious oscillations, showing that the new approach without the RSD
linearization produces results almost identical to the reference solution.

In Fig. 5 the convergence histories corresponding to all four computations are presented.
The logarithm of

‖�ρ‖2 =
√∑N

i=1(�ρi )2

N
(32)

is plotted versus the number of forward Euler explicit iterations combined with local time
stepping. Quantity �ρi = ρn+1

i − ρn
i is the actual change in the density at node i between

time steps n and n + 1. On this problem the LRD and CRD N schemes converge with the
same rate to the steady state up to machine accuracy. The convergence histories are practicaly
identical; the small differences are not visible on the resolution of the plot. The nonlinear
B schemes converge at approximately three orders of magnitude and then end up in limit
cycling. The CRD B scheme converges slightly less than theLRD B scheme. The relatively
poor convergence is a particular feature of present nonlinear RD schemes (such as the B
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FIG. 4. Mach number and pressure along the symmetry axes of the scramjet computed by the second-order
B scheme. Solid lines and symbols correspond to the reference LRD and the new CRD method, respectively.
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FIG. 5. Convergence histories corresponding to the computations of the flow field in a scramjet. Results are
obtained by the first-order LRD and CRD N schemes and the second-order LRD and CRD B schemes.

scheme), reported by other authors as well [1]. Nevertheless, the computations demonstrate
that the CRD apprach does not change the qualitative behavior of the convergence rate of
the LRD schemes.

4.2. Mach 10 Bow Shock around a Cylinder

In order to test the robustness of the CRD N scheme in the presence of a strong disconti-
nuity, we perform the test case of a steady Mach 10 bow shock flow around a cylinder. The
Delaunay mesh contains 12,085 nodes and 23,740 elements. Due to reasons of symmetry
the flow field is computed over the upper left quadrant of the cylinder only.

Mach number and pressure contour lines are plotted in Fig. 6. The solution is clean and
free of wiggles in both quantities, despite of the presence of the strong normal shock across
the stagnation line. The same computation was performed by the LRD N scheme based on
the RSD linearization, and the contour lines matched so well that on the plots it was almost
impossible to distinguish the two computations. The only difference appeared on the Mach
number contour plots close to the stagnation line, where the LRD solution was slightly
more wiggly right after the normal shock.

In Fig. 7 we show the Mach number and pressure (symbols) along the stagnation line
obtained by the new conservative CRD scheme (left column) and by the standard LRD
scheme based on the nonconservative linearization in primitive variables (right column). The
solid line represents the reference solution. The CRD results match the reference line with a
high accuracy, indicating that the excellent robustness and monotonicity of the conservative
LRD N scheme are retained by the new CRD N scheme. The plots demonstrate that the
linearization can be done in primitive variables if state Win is based on the new formula (27)
in the definition of the N scheme. However, the nonconservative nature of the primitive
linearization in combination with the standard scheme (19) is confirmed by the wrong shock
position and shock strength shown on the right of Fig. 7.

The convergence histories corresponding to the LRD and CRD N schemes are plotted
in Fig. 8. In the first period of the computation the convergence of the two schemes are very
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FIG. 6. Mach 10 bow shock flow around a cylinder computed by the first-order CRD N scheme. Mach
number (left) and pressure (right) contour lines are shown.

close to each other. After the bow shock is in position and the solution starts to converge in
the postshock regime a small offset develops between the curves. Both the LRD and the
CRD N schemes reach the level of machine accuracy, illustrating the robust convergence
of the new formulation.

The computation of the same bow shock flow was performed by the LRD and CRD B
schemes as well. Although the schemes kept both the density and the pressure positive, the
level of limit cycling was inadequately high, expressing the need for a significantly improved
robust nonlinear second-order positive scheme in the framework of the RD method.

4.3. Contact Discontinuity

An undesired feature of the standard LRD method based on the RSD linearization is that
the solution of shear flows can be inaccurate and even unstable under certain conditions. The
reason is due to the special choice of the Roe variable (E + p)/

√
ρ. In the case of a shear flow

the pressure gradient vanishes, as does the corresponding force in the momentum equation.
However, if the distribution of the residual is based on the Roe variables, then ∇[(E +
p)/

√
ρ] �= 0 in an element spreading across the shear; thus the schemes may detect a pressure

gradient. This effect is the most pronounced when a grid-aligned contact discontinuity has
to be resolved on a structured triangulation of the domain.

To illustrate this problem, we perform the numerical computation of a steady contact
discontinuity over a computational domain forming a rectangle (−1 ≤ x ≤ 1 and −0.5 ≤
y ≤ 0.5). The discontinuity propagates through the center of the structured diamond mesh,
parallel to the y-axes (see Fig. 9). In the initial state ρ = 1, p = 1, vx = 0 everywhere,
while vy = 4 for x ≤ 0 and vy = 8 for x > 0. At the bottom and top boundaries supersonic
inlet and outlet conditions are imposed, respectively.
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FIG. 7. Mach number and pressure (symbols) along the stagnation line in the Mach 10 bow shock flow around
a cylinder computed by the first-order N scheme. Solid line corresponds to the reference solution (LRD scheme
with RSD linearization). (Left) Conservative CRD scheme. (Right) Standard LRD scheme combined with the
nonconservative linearization in the primitive variables.
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FIG. 8. Convergence histories corresponding to the computation of a Mach 10 bow shock flow around a
cylinder obtained by the first-order LRD and CRD N schemes.
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y

x

yv =4 v =8y

FIG. 9. Schematic view of the structured diamond mesh used in the computation of a contact discontinuity
aligned with the mesh, parallel to the y-axes.

The exact solution of this problem is identical to the initial state. However, standardLRD
schemes with RSD linearization modify this equilibrium and converge to a numerical steady
state. Results along the outlet (top) boundary are shown for the N scheme in Fig. 10 for three
different resolutions. Squares (dotted line), triangles (dashed line), and diamonds (thin solid
line) correspond to meshes containing 41 × 21, 61 × 31, and 81 × 41 nodes, respectively.
The thick solid line represents the stationary exact solution.

The plots clearly show large perturbations in all primitive variables across the contact.
The pressure has a depression which results in the appearance of a force sucking the material
toward the interface. Indeed, from the left and right of the interface the x-component of the
velocity vector is positive and negative, respectively, indicating a horizontal mass flow
toward the center. As a result, the density increases at the interface. The amplitude of the
perturbations continuously increases away from the inlet boundary (y = −0.5). Computa-
tions done with different resolutions demonstrate that the amplitude of the perturbations
increases as the grid is refined, indicating the instability of the scheme for this particular
test case. Obviously, if the resolution is sufficiently high, or if the computational domain is
extended in the y-direction, the LRD schemes yield negative pressure.

However, if the linearization is performed in the set of primitive variables, the CRD
schemes detect and exactly preserve the stationary initial solution of this particular flow.

As a next step, we investigate the behavior of the schemes when the initial state inside
the domain is different from the steady solution. All the numerical experiments are repeated
for a strongly perturbed initial state inside the domain while keeping the inlet conditions
at the bottom boundary unmodified. The LRD N scheme shows similar unstable behavior
just like before, while the CRD N scheme converges to a steady state identical to the exact
solution up to machine accuracy.

The problem of the grid-aligned contact discontinuity is also computed by the LDA and
B schemes. The LRD LDA scheme gives negative pressure before reaching the numerical
steady state while theLRD B scheme introduces oscillations with growing amplitude as the
grid is refined, similar to the LRD N scheme. However, the CRD LDA and B schemes in
combination with the linearization in primitive variables preserve the unperturbed stationary
initial state and converge to the exact steady state for the case of the perturbed initial
state.
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FIG. 10. Solution along the outlet boundary (y = 0.5) in the problem of a grid-aligned contact discontinuity
computed by the LRD N scheme. Squares (dotted line), triangles (dashed line), and diamonds (thin solid line)
correspond to resolutions of 41, 61, and 81 nodes along the x-axes, respectively. The thick solid line represents
the stationary exact solution. Note that the results obtained by the CRD N scheme are not plotted, since they are
identical to the exact solution up to machine accuracy.

We note that the main conclusions obtained so far do not change if the diamond mesh is
replaced by a structured grid with left- or right-sided triangles as long as the flow is aligned
with the horizontal or vertical edges of the elements. Also, similar effects of instability
can be expected not only for the RSD linearization but for some other linearizations as
well.

4.4. Rotated Riemann Problem

To investigate the performance of the generalized N scheme for unsteady computations,
we consider the solution of a rotated Riemann problem over a uniform triangulation of the
2D computational domain containing n × 3 nodes. The rotation angle of the initial interface
is α = tan−1 0.5 (see Fig. 11). The top and bottom layers of nodes are connected via shifted
periodic boundary conditions. The forward Euler explicit update scheme (13) is employed
in combination with a first-order global time-stepping procedure and CFL = 0.9.

At t = 0 two semiinfinite uniform states are separated by a straight interface (see Fig. 11).
In state 1 ρ1 = 1, v⊥

1 = 10, v
‖
1 = 0, and p1 = 20 and in state 2 ρ2 = 1, v⊥

2 = −10, v‖
2 = 0,
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State 1
y

x

State 2

FIG. 11. Schematic view of the grid used in the computation of the rotated Riemann problem. Top and bottom
nodes are connected via shifted periodic boundary conditions according to the figure to mimic the infinite extent
of the computational domain in the y-direction.

and p2 = 1, where superscript ⊥ and ‖ refer to the corresponding coordinates of vector
quantities in the rotated frame with axes normal and tangential to the initial interface,
respectively. The solution of this problem contains a contact discontinuity, and two strong
shocks propagating in the opposite directions. The reference computation is performed by
a conservative 1D second-order finite-volume code on a fine mesh with n = 2000 points
employing the Lax–Friedrichs flux function and the minmod limiter.

Computational results are shown for the first-order N scheme in Figs. 12 and 13 at
t = 0.15. The plots at the top, middle, and bottom rows correspond to the conservative
LRD method with RSD linearization, the conservative CRD method with linearization in
primitive variables, and the nonconservative LRD method with linearization in primitive
variables. Numerical results verify the expectations, i.e., the positive conservative schemes
gave oscillation-free solutions with proper shock strength and shock speed. However, the
LRD method based on the nonconservative linearization in primitive variables gives a
wrong estimation of both the shock strength and the shock speed.

5. APPLICATION TO IDEAL MAGNETOHYDRODYNAMICS

An important application of the presented CRD schemes is the solution of the set of
ideal MHD equations, for which the option of a conservative RSD linearization does not
exists. The ideal MHD equations give a fluid approximation of dissipation-free quasineutral
plasmas under the presence of external magnetic field. In conservation law form they are
written as

∂

∂t




ρ

ρv

B
E


+ ∇ ·




ρv

ρvv + Î P − BB
vB − Bv

v(E + P) − B(v · B)


 = S, (33)
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FIG. 12. Rotated Riemann problem on mesh with 201 nodes in the x-direction. Density and pressure are
shown at the nodes along the x-axes in the rotated coordinate frame at t = 0.15. The solid line represents the
reference solution and the symbols correspond to the computed values. (Top row) Standard LRD scheme with
RSD linearization (conservative scheme). (Middle row) New CRD scheme with linearization in primitive variables
(conservative scheme). (Bottom row) Standard LRD scheme with linearization in primitive variables (noncon-
servative scheme).
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FIG. 13. Rotated Riemann problem on mesh with 201 nodes in the x-direction. Components of the velocity
are shown at the nodes along the x-axes in the rotated coordinate frame at t = 0.15. The solid line represents
the reference solution and the symbols correspond to the computed values. (Top row) Standard LRD scheme
with RSD linearization (conservative scheme). (Middle row) New CRD scheme with linearization in primitive
variables (conservative scheme). (Bottom row) Standard LRD scheme with linearization in primitive variables
(nonconservative scheme).
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where B is the magnetic induction vector, P = p + B · B/2 is the total pressure, E is the
total energy density defined by

E = p

γ − 1
+ 1

2
ρv · v + 1

2
B · B, (34)

and S is a source term. In this paper we consider the conservative form obtained by

S = 0, (35)

and the nonconservative symmetrizable [12] eight-wave formulation of the ideal MHD
equations containing Powell’s source term [16],

S = −s∇ · B, (36)

where

s = [0, B, v, v · B]T . (37)

Equation (33) has to be supplemented by the solenoidal condition of the magnetic field,
which is merely an initial constraint in an analytic treatment, and maintained all the time if
it is initially satisfied:

∇ · B = 0. (38)

There are two main difficulties in the numerical solution procedure of ideal MHD by
the RD method. The first problem concerns the conservation of the convective fluxes. Due
to the complexity of the ideal MHD equations the corresponding flux function cannot be
written as quadratic functions of any parameter vector, thus precluding the extension of the
RSD linearization. In this section we apply the presented CRD schemes to overcome this
difficulty.

The second problem is related to the treatment of the magnetic field. In the course of
the numerical solution of the ideal MHD equations the divergence of the magnetic field
may deviate from zero, which has a destabilizing effect on a numerical algorithm. Different
methods for the special treatment of the magnetic field have been summarized and compared
in the framework of finite-volume schemes by Toth [21]. However, the extension of these
methods to the context of RD schemes on unstructured grids turns out to be more complex.
In the work of Csı́k et al. [4, 7], the authors considered the symmetrizable [12] eight-
wave formulation of the ideal MHD equations containing Powell’s source term (36). The
inclusion of the source term into the Jacobians regularizes the scheme for multidimensional
computations, i.e., removes the singularity from the Jacobians ∂ Fj/∂U , and stabilizes
against the effect of the nonzero ∇ · B [4, 7, 16, 17]. However, the nonconservative nature
of the source term (36) may lead to wrong jumps across strong shocks [21].

In the present paper matrices K +
i and K −

i are based on the regularized symmetrizable
eight-wave formulation of ideal MHD incorporating the so-called divergence wave [16] into
the upwinding procedure of the residual. Note that the nonconservative nature of this set of
equations forming the basis of the upwinding procedure is unrelated to the conservativity of
the cell residual, since in the framework of the CRD method �E is obtained independently
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from Ki . Indeed, if the conservative form of Eq. (33) is solved involving S = 0, then the
cell residual is defined by Eq. (15). Concerning the nonconservative cell residual including
Powell’s source term, �E is computed by

�E =
∮
∂ E

F(W h) · n d S +
∫
E

s(W h)∇ · B(W h) dV, (39)

where the second integral on the right hand side is approximated as

∫
E

s∇ · B dV ≈
(

1

d + 1

d+1∑
i=1,i∈E

si

)(
1

d

d+1∑
i=1,i∈E

Bi · ni

)
. (40)

In the simulations the linearization of the Jacobians is done in the set of primitive variables:

PMHD = [ρ, vx , vy, Bx , By, p]T . (41)

Assuming linear variation of PMHD over an element, formula (40) yields exact integration
of the first seven components of Powell’s source term; only the last one,∫

E

v · B∇ · B dV, (42)

corresponding to the energy equation, is integrated approximately.
As an example, we solve the rotated Riemann problem presented in the previous section

with the addition of a uniform magnetic field to the initial state. This test case was presented
in [8] and also solved by Toth [21] on a 2D mesh to give numerical evidence that finite-
volume schemes for the solution of the eight-wave MHD equations with Powell’s source
term can produce significant errors in the jump relations across strong shocks, and that these
errors do not disappear in the limit of vanishing cell size.

At t = 0 the two states are given by ρ1 = 1, v⊥
1 = 10, v

‖
1 = 0, B⊥

1 = 5/
√

4π , B‖
1 =

5/
√

4π , p1 = 20 and ρ2 = 1, v⊥
2 = −10, v

‖
2 = 0, B⊥

2 = 5/
√

4π , B‖
2 = 5/

√
4π , p2 = 1.

The solution of this problem contains a contact discontinuity, a slow shock, a rarefaction
wave, and two strong shocks propagating in the opposite directions [8, 21]. Since a conser-
vative RSD linearization does not exist for the ideal MHD equations, we use as reference
a conservative 1D second-order finite-volume code on a fine mesh with n = 2000 points
employing the Lax–Friedrichs flux function and the minmod limiter.

The results of the Riemann problem at t = 0.15 are shown in Figs. 14–16. The top
and middle rows correspond to the conservative treatment of the convective fluxes F by
the CRD method without and with Powell’s source term, respectively. In the bottom row
computations based on the linearization in primitive variables combined with the stan-
dard definition (19) of Win are shown, including Powell’s source term into the Jacobians
[4, 7]. Squares indicate the numerical values obtained by the different RD N schemes on
201 nodes in the x-direction. The continuous line represents the 1D reference solution.

In the analysis of the results we distinguish two different sources of nonconservation error.
The first one is due to Powell’s source term (36), which vanishes in an analytic treatment,
since ∇ · B = 0. This error is only present in the computations shown in the middle and
bottom rows. Although it destroys the exact conservation of the fluxes, it adds stability and
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FIG. 14. Rotated MHD Riemann problem on mesh with 201 nodes in the x-direction. Density and pressure
are shown at the nodes along the x-axes in the rotated coordinate frame at t = 0.15. The solid line represents
the reference solution computed by a 1D second-order conservative finite-volume scheme on 2000 points using
the Lax–Friedrichs flux function and the minmod limiter. Symbols correspond to the computed values. (Top row)
CRD scheme without Powell’s source term; linearization is done in primitive variables (conservative equation and
conservative scheme). (Middle row) CRD scheme with Powell’s source term; linearization is done in primitive
variables (nonconservative equation and conservative scheme). (Bottom row) LRD scheme with Powell’s source
term; linearization is done in primitive variables (nonconservative equation and nonconservative scheme).
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FIG. 15. Rotated MHD Riemann problem on mesh with 201 nodes in the x-direction. Components of the
velocity vector are shown at the nodes along the x-axes in the rotated coordinate frame at t = 0.15. The solid
line represents the reference solution computed by a 1D second-order conservative finite-volume scheme on 2000
points using the Lax–Friedrichs flux function and the minmod limiter. Symbols correspond to the computed values.
(Top row) CRD scheme without Powell’s source term; linearization is done in primitive variables (conservative
equation and conservative scheme). (Middle row) CRD scheme with Powell’s source term; linearization is done
in primitive variables (nonconservative equation and conservative scheme). (Bottom row) LRD scheme with
Powell’s source term; linearization is done in primitive variables (nonconservative equation and nonconservative
scheme).
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FIG. 16. Rotated MHD Riemann problem on mesh with 201 nodes in the x-direction. Components of the
magnetic induction vector are shown at the nodes along the x-axes in the rotated coordinate frame at t = 0.15. The
solid line represents the reference solution computed by a 1D second-order conservative finite-volume scheme on
2000 points using the Lax–Friedrichs flux function and the minmod limiter. Symbols correspond to the computed
values. (Top row) CRD scheme without Powell’s source term; linearization is done in primitive variables (conser-
vative equation and conservative scheme). (Middle row) CRD scheme with Powell’s source term; linearization is
done in primitive variables (nonconservative equation and conservative scheme). (Bottom row) LRD scheme with
Powell’s source term; linearization is done in primitive variables (nonconservative equation and nonconservative
scheme).
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removes certain errors from the flux function due to the nonzero ∇ · B. Experience has shown
that in many cases a computation can be done only with Powell’s source term, if no other
special treatment for the magnetic field is applied. The second type of nonconservation error
is caused by the linearization based on the primitive variables combined with the standard
LRD scheme, which is equivalent to a nonconservative discretization of ∇ · F in the context
of ideal MHD. This error is present only in the computations on the bottom row.

The most significant deviation from the reference solution can be observed in the bottom
figures. The shocks propagate with a wrong speed and wrong strength. Compared to the
plots in the middle, this feature is mainly attributed to the nonconservative property of the
applied LRD N Scheme. Note that the CRD scheme with the source term closely follows
the reference solution on all but one plot. Indeed, the nonconservation error due to Powell’s
source term is so small in most of the variables that it is hardly visible on the corresponding
plots. Surprisingly, the nonconservative nature of Powell’s source term gives a significant
error only in the normal component of the magnetic field, in agreement with the finite-
volume results of Toth [21]. The error is approximately 10%, independent of the resolution
(refined computations are not shown).

The fully conservative results for the ideal MHD equations are presented in the top rows.
The two strong shocks propagate with the proper speed and proper strength. The solution is
monotone across the shocks without spurious oscillations. These observations demonstrate
the full conservative property and the positivity of the CRD schemes applied to ideal MHD.
In the right column of Fig. 15, showing the tangential velocity, the reader may observe one
or two (depending on the computation) symbols overshooting the reference solution at the
position of the shocks. Note that these points correspond to an intermediate solution across
the shocks, that they appear to be due to the rotation of 2D vector quantities into the local
frame aligned to the initial interface, and that they are unrelated to the monotonicity of
the schemes. The same feature is visible, for example, on the right of Fig. 13, showing the
tangential velocity for the Riemann problem without the presence of magnetic field solved
by the monotone LRD N scheme.

However, there is an undesired side effect of the full conservativity of the schemes in this
particular case. Since large values of ∇ · B are produced by the multidimensional solution
of a 1D problem, significant (and conservative) errors appear in the discrete divergence of
the convective fluxes, causing a perturbation of the solution around the initial discontinuity.
The fact that these disturbances are not present on the results of the same schemes with
Powell’s source term (middle rows) indicate that they are related to the instability due to
the nonzero ∇ · B. The main conclusion of this test is that the full conservativity of the first-
order linear monotone N scheme in the context of ideal MHD is obtained by the application
of the CRD method; however a robust treatment for the discretization of the magnetic field
is still needed.

6. CONCLUSIONS

In the present paper we propose a new formulation of the positive RD N scheme based
on the conservative contour integral of the convective fluxes. By construction, this scheme is
conservative for arbitrary flux functions and does not require the existence of an exact RSD
linearization. Instead, the linearization of the Jacobian matrices can be based on physical
reasonings, consideration of simplicity, and low computational cost. In the present paper
we employ a linearization based on the primitive variables, which is cheap to compute.
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According to the experience of the authors the new CRD N scheme is extremely robust
and reliable even for very strong normal shocks. Moreover, it retains the accuracy and good
convergence property of the original LRD schemes.

The benefit of the new CRD schemes may be considerable already in applications for the
Euler equations, where an exact conservative RSD linearization exists. As an example, in
the presence of strong grid-aligned shear flows the RSD linearization is known to introduce
a large pressure gradient across the shear, renderingLRD schemes inaccurate and unstable.
If the linearization is performed in the set of primitive variables defined before, the problem
does not appear in combination with the new CRD schemes; grid-aligned shear flows stay
stable. Our computations indicate that in certain cases the robustness of the LRD and CRD
B schemes is not satisfactory, especially for high-Mach-number flows expressing the need
for an improved nonlinear monotone RD scheme.

The most important applications of the new CRD schemes probably concern the solution
of highly nonlinear conservation laws where an exact RSD linearization does not exist, such
as the equations describing ideal magnetohydrodynamics, two-phase flows, or chemically
reacting space reentry flows.

As an example the CRD schemes were applied to the solution of the ideal magnetohy-
drodynamics equations. Numerical results confirm the conservativity and positivity of the
method across strong unsteady shocks. We also pointed out that a robust and conservative
treatment of the magnetic field is still needed.

Another potential application of the presented CRD approach concerns the extension of
the RD method to the context of nonlinear finite-element representation of the solution.
These elements can be, for example, cubic elements on triangles or complete finite elements
on 2D quadrilaterals and 3D hexahedra. Just as in the case of highly nonlinear conservation
laws on linear elements, the RSD linearization does not extend to these nonlinear finite
elements either. An elegant way to ensure the conservative property of the monotone RD
schemes for nonlinear finite elements could be the employment of the CRD method. These
ideas will be explored in the future.
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