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Abstract In this paper we consider the discretization of the Shallow Water equations by
means of Residual Distribution (RD) schemes. We review the conditions allowing the exact
preservation of some exact steady solutions. These conditions are shown to be related both
to the type of spatial approximation and to the quadrature used to evaluate the cell residual.
Numerical examples are shown to validate the theory.

Keywords Residual distribution · Shallow water · C-property · Generalized C-property ·
Unstructured meshes

1 Introduction and Generalities

In this paper we study the application of Residual Distribution (RD) schemes [2, 9] to the
Shallow Water equations. Our objective is to determine the conditions under which a high
order RD scheme is able to preserve exactly particular steady solutions of the problem.
The discussion presented here generalizes the work of [12, 13]. Similar results have been
discussed e.g. in [5, 11, 15, 16, 18, 19] for finite volume, WENO finite volume, and dis-
continuous Galerkin schemes. Here, as in [5, 11], the main focus is on two dimensional
unstructured mesh approximations and, as in [18], on problems non necessarily involving
trivial equilibria.

Our methodology is based on a weighted residual approach where the element integral
of the equation (viz. the element residual) is split into nodal residuals that, once assembled,
form algebraic nodal equations. The main result is that, due to the direct use the multidi-
mensional equation to write the algebraic equations, to the continuity of the spatial approx-
imation, and making use of an equivalence between the element integral of any quasi-linear
form of the equation and the integral of the conservative form, we are able to preserve ex-
actly steady solutions provided that: the spatial approximation is written in terms of the
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steady invariants, the analytical variation of the bathymetry is used, and the integration is
exact. We will show numerical evidence that this is indeed the case, at least whenever the
data of the problem are smooth.

2 Mathematical Problem and Notation

We consider the numerical approximation of solutions to the Shallow Water Equations
(SWE):

∂tu + ∇ · F(u) + S(u, x, y) = 0, (1)

where, denoting by H the water depth, by �q and �v the discharge and the local water speed
such that �q = (qx, qy) = H �v = H(vx, vy), u is the array of conserved quantities

u =
[

H

�q
]

,

and F denotes the conservative flux

F = [
Fx F y

]
⎡
⎣ �q

�v ⊗ �q + g
H 2

2
I2

⎤
⎦ ,

with I2 the 2 × 2 identity matrix, and g the gravity acceleration. The source term S in (1)
models the effects of the bathymetry B(x, y) on the mean flow:

S = gH

[
0

∇B

]
.

2.1 Particular Steady Solutions

By simple manipulations, we can rewrite the SWE as

∂tu +
[

∂xqx + ∂yqy

�v(∂xqx + ∂yqy) + H∇E + �q⊥(∂yvx − ∂xvy)

]
= 0, (2)

where E denotes the total energy

E = g(H + B) + �v · �v
2

,

and �q⊥ denotes the orthogonal discharge �q⊥ = (−qy, qx). This particular form of the equa-
tions allows to highlight a whole family of exact steady solutions involving homoenergetic,
irrotational flow, with a solenoidal discharge field, namely

E = g(H + B) + �v · �v
2

= constant,

∂yvx − ∂xvy = 0,

∂xqx + ∂yqy = 0.

(3)

Within this family of steady states we find the following well-known solutions:
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Lake at rest This solution is completely characterized by the initial uniform value of the
state vector

v =
[

E
�q
]

. (4)

In particular, ∀t ≥ 0 and ∀ (x, y) we have v = v0 given by:

H + B = (H + B)0 = 1

g
E0 = const,

qx = 0,

qy = 0.

(5)

Clearly, the last two conditions also imply �v = 0, so that all of (3) are verified.
Pseudo 1d flow A generalization of the lake at rest solution can be obtained by rewriting

the SWE in quasi-linear form in terms of the state vector (4). After a few manipulations
one obtains:

∂tu + Av∂xv + Bv∂yv + Sv(v, x, y) = 0, (6)

with Av = ∂vF x and Bv = ∂vF y . The entries of Av and Bv are readily obtained using the
chain rule. Note however, that since v depends on the bathymetry, extra terms containing
the derivatives of B arise when computing these matrices, so that the expression of the
source term is modified. The form of the source term is now

Sv(v, x, y) = 1

H − �u · �u
g

⎡
⎢⎢⎣

0

u

−v

⎤
⎥⎥⎦ �q⊥ · ∇B. (7)

These expressions show that a steady solution is given by v = v0, with v0 constant, ∀ t

and ∀ (x, y), provided that �q⊥ · ∇B = 0, that is provided that the bathymetry has only one
dimensional variations along discharge lines. Without loss of generality, in the following
we will refer to the pseudo 1d flow solutions as the ones for which

v = v0 =
⎡
⎣ E0

q0

0

⎤
⎦ ∀t and ∀(x, y) and B = B(x). (8)

Note that these solutions basically involve one dimensional flow. Additionally, since in
presence of shocks the relevant form of the SWE is the conservative form, relations (2)
are no longer valid, so that the pseudo 1d solutions in general do not admit shocks. More
general situations in which two different pseudo 1d flows are connected across a shock via
the jump conditions are known, but will not be considered here.

Potential flow For completeness we add to the list of steady solutions the case in which
the flow speed is obtained by a potential. In particular, let ϕ denote the scalar potential
verifying

�ϕ = 0.

If we set �v = (∂yϕ,−∂xϕ), one immediately sees that the second equation in (3) is always
satisfied. Moreover, if we set H = ϕ + H∞, with H∞ a constant, the last equation in (3) is
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also automatically true. At last, the first equation in (3) imposes the form of the bathymetry,
finally leading to the following potential solutions:

�ϕ = 0,

�v = (∂yϕ, −∂xϕ),

H = ϕ + H∞,

B = 1

g
E0 − ϕ − H∞ − ‖∇ϕ‖2

2g
.

(9)

In numerical applications one often requires the above steady solutions to be preserved
exactly in some sense, so that small perturbations of these solutions can be resolved without
the need of excessive mesh refinement. Schemes enjoying this property are often referred to
as well balanced. The following more precise characterization can be given [6].

C-property A numerical scheme that preserves exactly initial solutions of the Lake at rest
type (cf. (5)) is said to verify the C-property. A numerical scheme that preserves an initial
lake at rest solution within an accuracy higher than that of its truncation error is said to
verify the approximate C-property.

Generalized C-property A numerical scheme that preserves exactly initial solutions of the
pseudo 1d flow type (cf. (8)) is said to verify the generalized C-property. A numerical
scheme that preserves an initial pseudo 1d flow solution within an accuracy higher than
that of its truncation error is said to verify the approximate generalized C-property.

To our knowledge, so far no scheme is able to preserve exactly potential solutions of type
(9). The main difficulty lays in the need of preserving exactly the solenoidal and irrotational
conditions.

3 Residual Distribution Discretization

We consider discretizations of (1) based on a conservative Residual Distribution (RD) ap-
proach [8, 14]. In particular, the schemes we analyze are those discussed in [12, 13].

The basic principles of the RD discretization procedure can be summarized as follows.
Let Th be an unstructured triangulation of the two dimensional spatial domain, composed
of non overlapping triangles, h denoting a characteristic element size. Let T be the generic
triangle of the mesh. We denote by uh be a continuous piecewise polynomial approximation
of u built starting from collocated (nodal) values ui , i ∈ Th. An example of such an approxi-
mation is given by standard P k Lagrange finite elements. In particular, we denote by ψi the
basis function associated to the degree of freedom ui , so that

uh =
∑
i∈Th

ψiui .

On a generic element T define the fluctuation φ(uh)

φ(uh) =
∮

∂T

Fh(uh) · n̂ dl +
∫

T

Sh(uh, x, y) dx dy. (10)

having denoted by Fh(uh) and Sh(uh, x, y) numerical approximations of the flux and of
the source term, to be defined.
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Concerning the time discretization, here we only consider the second order Crank-
Nicholson operator

∂tu + ∇ · F(u) + S(u, x, y) ≈ un+1 − un

�t
+ ∇ · F(un+1/2) + S(un+1/2, x, y),

with �t the time step, and un+1/2 = (un+1 + un)/2. With this notation we define the cell
residual �(uh)

�(uh) =
∫

T

(
un+1

h − un
h

�t
+ ∇ · Fh(u

n+1/2
h ) + Sh(u

n+1/2
h , x, y)

)
dx dy

=
∫

T

un+1
h − un

h

�t
dx dy + φ(un+1/2

h ). (11)

The RD discrete counterpart of (1) is obtained by splitting the cell residual to all the de-
grees of freedom (nodes) of element T . In particular, if �j(uh) is the amount of residual
distributed to j ∈ T , then ∑

j∈T

�j (uh) = �(uh). (12)

Finally, a local discrete approximation of (1) is obtained by requiring

∑
T ∈Th|i∈T

�i(uh) = 0 ∀i ∈ Th. (13)

The properties of scheme (12)–(13) depend on the choices made in terms of approxi-
mation (viz. interpolation) and distribution (viz. definition of �j , given �). For a thorough
discussion of these properties we refer the reader to [1, 3, 4, 8, 9, 13]. The following two
properties are relevant to our discussion.

Conservation For the schemes considered here, conservation is guaranteed by the use of
boundary integration of the flux in the computation of the cell residual [8]. In particular,
under some continuity assumptions on the �j s, always verified in practice, scheme (12)–
(13) verifies a Lax-Wendroff theorem, as long as the discrete approximation of the flux Fh

used in (10) is continuous across element edges [3].
Accuracy For continuous k-th order accurate spatial approximations of u, and of flux and

source, scheme (12)–(13) has a truncation error of order O(hk) provided that whenever uh

is the interpolant of a classical solution of (1), then (in 2d) [3, 13]

�j(uh) = O(hk+1).

In particular, schemes for which

�j(uh) = βj�(uh),

with βj a uniformly bounded distribution matrix have a O(hk) truncation error [3, 13].

In all the numerical applications shown in the paper, we will make use of the stabilized
limited Lax-Friedrich’s RD scheme presented in detail in [12]. Even though the analysis
presented in this paper remains valid in the general case of P k interpolation, we will focus
on a P 1 approximation in space, using the Crank-Nicholson scheme in time.
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4 Preservation of Steady Solutions

The constraints given so far on the RD discretization allow for the construction of high order
conservative schemes. The question we want to answer now is how to ensure the satisfaction
of the C-property and/or of its generalized variant. In particular, two degrees of freedom are
left: the choice of the spatial approximation of the unknown u, and that of flux and source
needed for the evaluation of the fluctuation φ.

To begin with, let us have a look at the discrete equations (13). These define a system
of nonlinear algebraic equations for the nodal values ui . The solution of such system is
obtained by means of some iterative procedure such as a standard Newton algorithm, or
as an explicit fixed point algorithm as the one employed in [12]. As an example, we can
consider the case of a dumped Newton procedure. If we set w = un+1, the dumped Newton
loop writes

∑
T ∈Th|i∈T

∑
j∈T

(
δij

ωi

+ (
∂uj

�i

)k

)(
wk+1

j − wk
j

) = −
∑

T ∈Th|i∈T

�k
i ,

where ωi is the dumping parameter. When initializing the loop with w0 = un we have on the
right hand side, for a high order RD

�0
i = βi�

0 = βi

(∫
T

w0
h − un

h

�t
dx dy + φ

(
w0

h + un
h

2

))
= βiφ(un

h),

so that we end with

∑
T ∈Th|i∈T

∑
j∈T

(
δij

ωi

+ (
∂uj

�i

)k

)(
w1

j − un
j

) = −
∑

T ∈Th|i∈T

βiφ(un
h).

Clearly, if φ(un) = 0 ∀ T , the Newton algorithm converges in one iteration to the solution
w = un+1 = un. Hence, our objective is to select the spatial approximation, and the continu-
ous approximation of the flux and of the source, such that

φ(uh) =
∮

∂T

Fh(uh) · n̂ dl +
∫

T

Sh(uh, x, y) dx dy = 0.

4.1 Lake at Rest Solutions

The preservation of the lake at rest solution is easily achieved in the RD context. Early results
showing the potential of the approach can be found in [7]. The approach discussed here is a
generalization of the construction proposed in the last reference. The idea is to exploit the
fact that we have a set of steady invariants v. We would like to express the discrete equations
in terms of differentials of v. In our case, this means that the approximation should be

uh = u(vh) with vh =
∑
i∈Th

ψi

[
g(Hi + Bi)

�qi

]
.

On the lake at rest solution we have vh = v0. If we now look at the fluctuation φ we have:

φ =
∮

∂T

[
1
�uh

]
�qh · n̂ dl +

∮
∂T

⎡
⎣ 0

g
H 2

h

2

⎤
⎦n̂ dl +

∫
T

[
0

gHh∇Bh

]
dx dy
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=
∮

∂T

⎡
⎣ 0

g
H 2

h

2

⎤
⎦ n̂ dl +

∫
T

[
0

gHh∇Bh

]
dx dy.

At this point we still have to choose how to represent the bathymetry. Note that, indepen-
dently on this choice, for exact integration we can apply Gauss’ theorem to get

φ =
∫

T

[
0

Hh∇Eh

]
dx dy =

∫
T

[
0

Hh∇E0

]
dx dy = 0,

which shows that

Proposition 4.1 (C-property—Exact integration) When using exact integration, a high or-
der RD scheme verifies the C-property, provided that the fluctuation is evaluated using the
approximation written in terms of the steady invariants [g(H + B)�q]t .

Exact integration is of course never used in practice. A logical choice is to assume for the
bathymetry the same variation used for the invariants, namely Bh = ∑

i∈Th
ψiBi . In this case

we recover the constructions of [7] and [12, 13], which are very similar to the hydrostatic
reconstruction used e.g. in [5]. In particular, we have Hh = Eh/g − Bh which belongs now
to the same polynomial space used for the approximation. In this case, we can indeed use
exact integration with respect to this polynomial variation obtaining, as before, the exact
preservation of the lake at rest state.

Proposition 4.2 (C-property—Same approximation for depth and bathymetry) When using
the same polynomial approximation for Hh and Bh and exact integration with respect to this
assumption, a high order RD scheme verifies the C-property.

The last possibility is that of using for B its exact expression, while evaluating φ with ap-
proximate integration. In this case, provided that B is smooth enough, the accuracy obtained
will depend on the quadrature formula used in practice. An estimate of the asymptotic be-
havior of the error can be obtained by studying the explicit fixed point resolution technique
used in [12]. In this approach, the Newton loop is replaced by the following update

wk+1
i = wk

i − ωi

∑
T ∈Th|i∈T

(βi�)k ,

with ωi a relaxation parameter, that can be easily shown to be bounded by O(h−1) for stabil-
ity reasons[12]. In the following we assume ωi = O(h−1). Suppose now that the bathymetry
has a smooth variation, and that we evaluate the line integrals in the fluctuation with for-
mulas exact for polynomials of degree pl , and the surface integrals with formulas exact for
polynomials of degree ps . On the lake at rest solution we have

φ =
∮

∂T

⎡
⎣ 0

g
H 2

h

2

⎤
⎦ n̂ dl +

∫
T

[
0

gHh∇Bh

]
dx dy

=
∫

T

[
0

Hh∇E0

]
dx dy + max(εpl

, εps ) = max(εpl
, εps ) = max(O(hpl+2), O(hps+3)),

where the last estimates are readily obtained by e.g. bounding truncated Taylor develop-
ments of the integrand.
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The first explicit fixed point iteration will give

w1
i = un

i + O(h−1)O(φ(vn
h)) = un

i + max(O(hpl+1), O(hps+2)).

Starting from the second iteration we have to take into account the time variation of the
solution. Neglecting variations on the asymptotic order of φ, we can write

�i = βi� = βi

(
O

( |T |
�t

)
O(w1 − un) + O(φ)

)

= βi(O(h)max(O(hpl+1), O(hps+2)) + max(O(hpl+2), O(hps+3)))

= max(O(hpl+2), O(hps+3)),

which easily leads to the result that for the k-th iterate we have

wk+1
i = wk + max(O(hpl+1), O(hps+2)) = · · · = un

i + max(O(hpl+1), O(hps+2)). (14)

This shows that

Proposition 4.3 (Approximate C-property) When using approximate quadrature and the
exact variation of the bathymetry, high order RD verify the approximate C-property, pro-
vided that the bathymetry variations are smooth enough. A coarse estimate of the error on
the solution is ε = max(O(hpl+1), O(hps+2)) if the line quadrature formulas used are exact
for polynomials of degree pl and the surface quadrature formulas are exact for polynomials
of degree ps .

4.2 Pseudo 1d Flow Solutions

In the case of pseudo 1d flow solutions, we are unfortunately not able to provide a simple
and general strategy using the same polynomial for the depth and the bathymetry. Things
are much easier in a purely one dimensional context, in which our RD approach has very
close similarities to the regular/singular residual decomposition approach discussed in [17,
18]. When looking at the problem from a multidimensional perspective, which is a must on
unstructured grids, we can however repeat the asymptotic analysis discussed for the lake at
rest state.

In particular, when evaluating the fluctuation we set uh = u(vh), where v is now given
by (8), with E as in (3). Also, we set Fh = F(vh), and Sh = S(vh, x, y), and use the
exact expression of the bathymetry. Since all the quantities are continuous and differentiable
within an element (provided that the bathymetry is), when using exact integration we can
use Gauss’ theorem and chain rule differentiation to get (cf. Sect. 2.1, (6) and (7))

φ(vh) =
∫

T

(
∂tu + Av(uh)∂xvh + Bv(vh)∂yvh + Sv(vh, x, y)

)
dx dy

=
∫

T

1

Hh − �uh · �uh

g

[
0
uh

−vh

]
�q⊥
h · ∇B dx dy.

Since, by hypothesis we are using the exact representation of the bathymetry, we will have
(cf. (8)) ∇B = (∂xB, 0). Since �q⊥

h = (0, qx h), the source term vanishes, and so does the
fluctuation. Hence
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Proposition 4.4 (Generalized C-property—Exact integration) When using exact integra-
tion, high order RD verify the C-property, provided that the fluctuation is evaluated using
the exact bathymetry and the approximation written in terms of the steady invariants [E �q]t .

As in the case of the lake at rest solution, exact integration is in practice replaced by
numerical quadrature. Also for the pseudo 1d solutions, if the regularity of the bathymetry
is high enough, we can estimate the quadrature error, and the perturbation introduced in the
numerical solution. The analysis is identical to the one performed for the lake at rest and
again leads to the final estimate (14).

Proposition 4.5 (Approximate generalized C-property) When using approximate quadra-
ture and the exact variation of the bathymetry, high order RD verify the approximate gen-
eralized C-property, provided that the bathymetry variations are smooth enough. A coarse
estimate of the error on the solution is ε = max(O(hpl+1), O(hps+2)) if the line quadra-
ture formulas used integrate exactly polynomials of degree pl and the surface quadrature
formulas are exact for polynomials of degree ps .

5 Numerical Examples

This section provides a numerical verification of the theory discussed. Results showing the
respect of the C-property when using the same approximation for the depth and for the
bathymetry (cf. Proposition 4.2) have been published already in [12, 13]. We refer to these
references for a thorough numerical assessment of this approach.

Here we are more interested in the numerical verification of Propositions 4.3 and 4.5.
In particular, our main interest is the verification of the estimate (14). To do this we will
consider a simple test case involving a pseudo-one dimensional variation of the bathymetry.
All the test cases involve the spatial domain [0, 25]2, over which we impose three different
variations of the bathymetry:

Case T1 In this case we take B = B(x), with given by

B(x) =
{

0.2 − 0.05(x − 10)2 if x ∈ [8, 12],
0 otherwise.

Case T2 In this case we take B = B(x) given by

B(x) =
{

0.2 sin(0.25π(x − 8))4 if x ∈ [8, 12],
0 otherwise.

Case T3 In this case we take B = B(x) given by

B(x) =
{

0.2 sin(0.25π(x − 8))6 if x ∈ [8, 12],
0 otherwise.

The objective is to have bathymetries with different regularity in order to be able to test the
influence of this parameter on the validity of (14).

All the computations have been run on unstructured grids as the one reported in Fig. 1.
The unstructured nature of the meshes introduces a multidimensional character in the tests,
since no preferential direction is present. In particular, all the grid refinement studies have
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Fig. 1 Unstructured
triangulation used in the
numerical tests

been performed by conformally refining the mesh of Fig. 1. Three levels of refinement have
been considered. The coarsest mesh size is h ≈ 25/40.

We have considered three quadrature strategies:

Strategy Q1 We use 2 line quadrature points corresponding to the trapezium rule, and 1
surface quadrature point, corresponding to mid-point quadrature. Both formulas integrate
exactly polynomials of degree 1, hence the expected accuracy, according to (14) is

ε = O(max(h2, h3)) = O(h2).

Strategy Q2 We use a standard 2 points Gaussian line quadrature formula, and a 6 points
surface quadrature formula. The Gaussian formula integrates exactly polynomials of de-
gree 3, while the surface formula integrates exactly polynomials of degree 4. Hence the
expected accuracy, according to (14) is

ε = O(max(h4, h6)) = O(h4).

Strategy Q3 We use a standard 3 points Gaussian line quadrature formula, and a 6 points
surface quadrature formula. The Gaussian formula integrates exactly polynomials of de-
gree 5, while the surface formula integrates exactly polynomials of degree 4. Hence the
expected accuracy, according to (14) is

ε = O(max(h6, h6)) = O(h6).

The 6 point surface quadrature formula has been taken from [10].
We consider both an initial lake at rest state, and a pseudo 1d flow state. In both cases

the initial value for the total energy is taken as E0 = 22.06605. In the lake at rest solution we
obviously set q0 = 0, while for the pseudo 1d solution we take q0 = 4.42.

Time dependent computations have been run with the LLFs scheme described in detail
in [12]. In particular, we set the initial solution to the exact steady one and let the scheme
compute an unsteady solution until the final time tf = 0.1. We then compute the error on the
total energy between the final solution and the exact/initial one.

The results for the lake at rest case are reported on Figs. 2, 3, and 4. In the figures we
plot the grid convergence of the error for the cases T1, T2, and T3, comparing the three
quadrature strategies with the prediction of (14).

From Fig. 2 we see that all the strategies fail to reach even the level of truncation error
of the scheme, which is second order. This is definitely due to the lack of regularity of the
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Fig. 2 Grid convergence for the
case T1, lake at rest with
E0 = 22.06605

Fig. 3 Grid convergence for the
case T2, lake at rest with
E0 = 22.06605. The dashed line
next to each convergence curve
represents the corresponding
slope as predicted by (14)

bathymetry. Indeed, in the case T1, the function B(x) is only continuous, hence all formulas
basically give first order of accuracy. The slope observed is indeed between 1 and 2, as
shown in the picture.

More interesting is the result of Fig. 3. In this case, the slopes observed are in perfect
agreement with (14) for the strategies Q1 and Q2. For the quadrature Q3 we only observe
fourth order of convergence, instead of the sixth order predicted by (14). However, in this
case the bathymetry only has three continuous derivatives, which explains why we cannot
obtain more than fourth order of accuracy, which is indeed what we get with the strategy Q3.



J Sci Comput (2011) 48:304–318 315

Fig. 4 Grid convergence for the
case T3, lake at rest with
E0 = 22.06605. The dashed line
next to each convergence curve
represents the corresponding
slope as predicted by (14)

Fig. 5 Grid convergence for the
case T1, pseudo-1d flow with
q0 = 4.42 and E0 = 22.06605

Finally, the results for the T3 test case, shown in Fig. 4, confirm the validity of (14). In
this case, the bathymetry has enough continuous derivatives to achieve the theoretical sixth
order of convergence when using the Q3 strategy, confirming the validity of Proposition 4.3.

The results obtained for the pseudo 1d flow problem are identical in nature to the ones dis-
cussed for the lake at rest state. The grid convergence plots comparing the different quadra-
ture strategies are reported in Figs. 5, 6, and 7.

As before, the bathymetry in T1 is only continuous, and the accuracy observed is between
one and two, as we can see on Fig. 5. As we can see on Fig. 6, the scheme does better in case
T2, in which we can get both the second and fourth orders of accuracy predicted by (14) for
the quadrature strategies Q1 and Q2. In the case of quadrature Q3 we get again a fourth
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Fig. 6 Grid convergence for the
case T2, pseudo-1d flow with
q0 = 4.42 and E0 = 22.06605.
The dashed line next to each
convergence curve represents the
corresponding slope as predicted
by (14)

Fig. 7 Grid convergence for the
case T3, pseudo-1d flow with
q0 = 4.42 and E0 = 22.06605.
The dashed line next to each
convergence curve represents the
corresponding slope as predicted
by (14)

order slope, due to the lack of regularity of B(x). The fact that for the same bathymetry we
get the same behavior in the lake at rest and in the pseudo 1d flow case is encouraging. It
confirms our theoretical analysis that the error is only related to quadrature, hence to the
regularity of the data.

At last, we can see on Fig. 7 that also for the pseudo 1d flow solution when the data is
regular enough, (14) predicts correctly the asymptotic error, thus confirming the validity of
Proposition 4.5.
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6 Final Remarks

In this paper we have analyzed the satisfaction of the C-property and of the generalized C-
property when using high order residual distribution schemes to discretize the shallow Water
equations. We have provided simple arguments to prove that, provided that the approxima-
tion is written in the correct set of variables and that the exact bathymetry is used, one can
obtain at least the approximate version of these properties on arbitrary triangulations. An
estimate of the asymptotic error has been given and confirmed by numerical computations.

From the practical point of view the need of using the exact data is a drawback, since
these data are often not available in the form of an equation. Moreover the dependence of
the accuracy on the regularity or the bathymetry is also a limitation, the variation of the bed
slope being often quite irregular.

However, we judge our exercise interesting in the sense that it points out in 2d the need
of an approximation of the bathymetry richer than the one used for the solution, and, more
importantly, of a truly multidimensional approach. In particular, in the case of the pseudo
1d flow, the form of the source term in (7) suggests that the variations of the bathymetry in
the cross stream direction are important and, hence, a truly multidimensional treatment is
needed if one wants to better resolve these non-trivial equilibria.

Other approaches in which the bathymetry is reconstructed with polynomials of higher
degree than the solution, or in which one adopts a local stream-aligned reference frame to
decompose different components of ∇B are of course also possible. The real challenge is
also to be able to handle more complex 2d solutions such as the potential solution (9). In [12]
it has been shown that the RD scheme used in this paper provides truly second order accurate
approximations to these solutions, however a general approach allowing to go beyond the
truncation error has still to be found. All these topics will be explored in the future.
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