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1 INTRODUCTION

In the present contribution, we describe residual distribution
() methods, seen from a rather fundamental point of view.
We try to focus on the basic features that distinguish these
methods from the more traditional finite-volume () and
finite-element () methods, at the same time showing the
many links and similarities. We aim to make clear that, after
almost 25 years of research, there is a very rich framework,
even though it is still far from being fully developed.

Historically, the residual-based discretizations discussed
in this contribution have their origin in two different
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research lines. The first line was concerned with the study of
cell-vertex  schemes by Hall, Morton, and collaborators
in the early 1980s (Rudgyard, 1993). They realized that
improved accuracy could be obtained by discretizing the
residual operator as a whole, instead of treating the terms
in the partial differential equation (PDE) separately, since
a careful design of the residual operator could then lead
to cancellation of truncation error terms resulting from the
different terms. At the same time, the stabilization needed
for convection operators could be designed considering
multidimensional aspects like diffusion along the stream-
line, following similar ideas used in finite-element schemes.
Independently, Ni proposed, in a landmark paper in 1981, a
Lax–Wendroff (LW)  scheme (Ni, 1981). Similar ideas
are also at the basis of the residual-based schemes developed
by Lerat and Corre (2001).

The second line of research was the work of Roe, aiming
to mimic key properties of the physics of the PDE by the
discretization. In 1982, Roe (1982) proposed an upwind
residual distribution framework for the 1D Euler equations
under the name of ‘fluctuation splitting ()’, starting from a
reinterpretation of his flux difference splitting scheme. In
1D, the residual (or fluctuation as Roe called it) is just the flux
balance (or flux difference) over the cell. Roe’s classical 
scheme (Roe, 1981) corresponds to a downwind distribution
of the residual, used to update the solution located at the
vertices. The  view of Roe’s ‘first-order’ upwind scheme
allowed to obtain second-order accuracy at steady state on
nonuniform grids in the presence of a source term, if this was
included in the residual (Roe, 1986a).

Generalization for a scalar convection equation in two
space dimensions followed in 1987, with the ‘fluctuation’
being defined as the flux contour integral, that is, the residual,
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computed over triangular cells (Roe, 1987). In this paper,
some of the most used linear multidimensional upwind
( ) distribution schemes (N and low diffusion A (LDA))
were already introduced. The nonlinear positive (local
extremum diminishing (LED)) and second-order version of
the N scheme (positive streamwise invariance (PSI) scheme)
followed in 1990; see, for example, Struijs et al. (1991).

Extension to hyperbolic systems in two space dimensions
however proved to be much more difficult. Multidimensional
characteristic-based decompositions for the Euler equations
were explored in the late 1980s, aiming to decompose the
equations in a set of minimally coupled scalar convec-
tion equations (Deconinck et al., 1986), or using simple
wave models (Roe, 1986b). These decomposition techniques
aimed to include multidimensional physics, like the propa-
gation of entropy and total enthalpy along the streamline in
smooth steady flow, or acoustic Riemann invariants along the
Mach lines in 2D steady supersonic flow.

The application of such decomposition models was first
attempted in a standard  context, with modest success
(Powell et al., 1990; Parpia and Michalec, 1993; Van Rans-
beeck and Hirsch, 1996; Hirsch et al., 1987): the main
problem is that classical upwind finite-volume schemes base
their upwinding on a splitting of the normal fluxes crossing
each cell face, which introduces implicitly a locally 1D
model in the direction of the normal. Instead, the residual (the
flux divergence in the limit of vanishing cell size) is inde-
pendent of the geometry, and it makes more sense to split
this quantity in its multidimensional components. Attempts
of  schemes based on multidimensional splittings have
led to some remarkable successes, for example, in the case
of full decoupling into scalar convection equations, which
is possible in 2D supersonic steady flow (Paillère et al.,
1995; Paillère, 1995). This allowed the straightforward use
of the scalar convection schemes. However, application to
subsonic and 3D flow has still not lead to superior schemes
that justify the increased complexity, although progress has
been achieved by the so-called hyperbolic-elliptic splittings
(Nishikawa et al., 2001e).

An alternative for the decomposition techniques to handle
the system case was the introduction of matrix distribu-
tion schemes, which are an algebraic generalization of the
scalar convection schemes, introduced in van der Weide and
Deconinck (1996), Paillère (1995) and van der Weide and
Deconinck (1997). This approach, which is applicable to any
hyperbolic system, is recalled in the present contribution. For
a decoupled system, it is equivalent to the decomposition
methods combined with the scalar schemes.

In this paper, we attempt to give a review of the princi-
ples of the method, with a ‘modern’ point of view, which
benefits from the knowledge of the fundamental theoretical
properties acquired over the years. The layout of the paper

proceeds as follows: After introducing some generalities,
a very basic prototype residual discretization for a scalar
steady convection equation is presented in Section 3,
and its properties of accuracy, monotonicity, and energy
stability are discussed. Then a large number of schemes
are cast in this framework, also including some  and
Petrov–Galerkin (PG) finite-element schemes (like stream-
line upwind Petrov–Galerkin (SUPG)). Special attention
is paid to nonlinear LED schemes and conservation for
nonlinear conservation laws. Then, in Section 5, the proto-
type discretization of Section 3 is generalized to include
unsteady terms, with the aim of solving the time-accurate
problem. Again, accuracy (also in time), monotonicity,
and stability are reviewed, and a number of time-accurate
schemes are presented. Finally, in Section 6, the extension
to systems is discussed, building on the matrix extension of
the scalar schemes, and numerical results are presented for
the Euler equations of gas dynamics, for a hyperbolic model
for homogeneous two-phase flow, and for the shallow water
equations. The contribution ends with summarizing the
main achievements and highlighting the ongoing research
directions and open issues.

2 GENERALITIES

2.1 Model problem: hyperbolic conservation laws

This paper presents a class of numerical discretizations for
the model problem

𝜕u
𝜕t

+ ∇ ⋅  (u) = (u, x, y, t) on

ΩT = Ω × [0, tf ] ⊂ ℝd ×ℝ+ (1)

with u a vector of m conserved quantities, d the number of
space dimensions (2 or 3),  the m × d tensor of conservative
fluxes,  a vector of m source terms, and ΩT =Ω × [0, tf] the
space-time domain over which solutions are sought. System
(1) is equipped with a set of boundary conditions (BC) on
𝜕ΩT (or on properly defined portions of this set), and with an
initial solution

u(x1, … , xd, t = 0) = u0(x1, … , xd) (2)

We focus on the two-dimensional case d = 2,  (u) =
(F(u),G(u)), and x⃗ = (x1, x2) = (x, y); however the theory
easily extends to three dimensions. We assume (1) to be
hyperbolic, that is, ∀ 𝜉 = (𝜉1, 𝜉2) ∈ ℝ2, the matrix

K(𝜉,u) = 𝜕F(u)
𝜕u

𝜉1 +
𝜕G(u)
𝜕u

𝜉2 (3)
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admits a complete set of real eigenvalues and linearly inde-
pendent eigenvectors. A lot of information can be obtained
from the analysis of the scalar (m = 1) counterpart of (1):

𝜕u
𝜕t

+ ∇ ⋅  (u) = (u, x, y, t) on ΩT ⊂ ℝ2 ×ℝ+ (4)

The most simple example of scalar conservation law we will
consider is the linear advection problem

𝜕u
𝜕t

+ a⃗ ⋅ ∇u = (x, y) on ΩT ⊂ ℝ2 ×ℝ+ (5)

obtained with  = a⃗u, and a⃗ = (a1, a2) ∈ ℝ2 constant, or
such that ∇ ⋅ a⃗ = 0, and with  = (x, y).
2.2 Notation: mesh geometry

We are concerned with the construction of algorithms for the
approximation of solutions to (1) on unstructured triangular
meshes. In this section we introduce some basic notation
used throughout the text. We denote by h, a triangulation
of the spatial domain Ω. The mesh parameter h is a reference
element length. We denote by E the generic triangle, whose
area is denoted by |E|. Given a node j ∈ E, n⃗j denotes the
inward pointing vector normal to the edge of E opposite to
j, scaled by the length of the edge (Figure 1a). Since E has a
closed boundary, one has∑

j∈E

n⃗j = 0 (6)

Given a node i ∈ h,i denotes the set of triangles
containing i. By abuse of notation, we will say that j ∈ i if
node j belongs to an element E ∈ i. For any vertex i of the
grid, we denote by Si the median dual cell obtained by joining
the gravity centers of the triangles in i with the midpoints
of the edges meeting in i (Figure 1b). The area of Si is

|Si| = ∑
E∈i

|E|
3

(7)

The temporal domain [0, tf] is discretized by a sequence
of discrete time levels {t1 = 0, … , tn, tn+1, … , tM = tf}.

(a)

k E
→

Di

Si

nj

j

i
(b)

i

Figure 1. Median dual cell Si and nodal normal n⃗j.

The schemes we consider allow us to compute an approxi-
mation of the solution at time tn+1, known its value at time
tn (and eventually at a finite set of time levels tn−1, tn−2,
… ). Throughout the text, we often focus our attention on a
generic space-time slab Ω × [tn, tn+1]. The time-width of the
slab is the time step Δt = tn+1 − tn.

Throughout the text, the following grid and time-step regu-
larity assumptions are supposed to be true, in any space-time
slab Ω × [tn, tn+1]:

Cmesh
1 < sup

E∈h

h|E| < Cmesh
2 , Cmesh

3 <
Δt
h
< Cmesh

4 (8)

for some finite, positive constants Cmesh
1 , Cmesh

2 , Cmesh
3 , and

Cmesh
4 .

2.3 Notation: discrete approximation

We consider continuous discrete approximations of the
unknown, built starting from its values in given locations
in the grid. Given a continuous variable 𝜃(x, y, t), if not
stated otherwise, 𝜃h will denote any continuous discrete
approximation of 𝜃, such that given 𝜃n

i = 𝜃(xi, yi, t
n), one

has 𝜃h(xi, yi, t
n) = 𝜃n

i . If 𝜃 is a function of the unknown u,
we shall often suppose 𝜃h = 𝜃(uh). When specified in the
text, we will use the same notation to refer to continuous
piecewise polynomial approximations in space of the type

𝜃h = 𝜃h(x, y, t) =
∑
i∈h

𝜓i(x, y)𝜃i(t)

=
∑
i∈h

𝜓i(x, y)𝜃(xi, yi, t)

=
∑
E∈h

∑
i∈E

𝜓i(x, y)𝜃(xi, yi, t) (9)

where in general the summation extends not only over the
vertices of the triangulation but also over a properly chosen
set of nodes placed along the mesh edges and/or within the
elements. Several choices are possible to contruct such poly-
nomial approximations. For a review, the reader can refer
to Eskilsonn and Sherwin (2005) and references therein. In
any case, we consider basis functions verifying

𝜓i(xj, yj) = 𝛿ij ∀i, j ∈ h,
∑
j∈E

𝜓j(x, y) = 1 ∀E ∈ h (10)

with 𝛿ij Kroenecker’s delta. In fact, the discrete approxi-
mation 𝜃h is nothing else than a polynomial finite-element
interpolant of the values of 𝜃 in the chosen set of nodes. In
particular, for any element E, we denote by K the number of
degrees of freedom (DOF) (nodes) it contains.
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Most of the time, however, we will consider continuous
piecewise linear approximations of the unknown, and refer
to {𝜓i}i∈h

as the continuous piecewise linear P1 () basis
functions, respecting

𝜓i(xj, yj) = 𝛿ij ∀i, j ∈ h, ∇𝜓i|E =
n⃗i

2|E| ,∑
j∈E

𝜓j(x, y) = 1 ∀E ∈ h (11)

3 PROTOTYPE DISCRETE
APPROXIMATION FOR STEADY
PROBLEMS

In this section, we introduce the basics of the  approach
for steady problems. We recall some elements of the accuracy
and stability analysis of the schemes. Examples are given.
We focus on the scalar case and, unless stated otherwise, on
continuous second-order P1 finite-element approximations
built starting from the values of the unknown in the vertices
of the grid.

3.1 The residual distribution idea

Consider the solution of the steady limit of (4). We are
interested in the following class of discretizations.

Definition 1. (Residual distribution/fluctuation splitting
scheme) Let u0

h, uh, h, and h be the continuous approx-
imation in space respectively of the initial solution, of the
unknown, of the flux, and of the source term. A Residual
Distribution or Fluctuation Splitting scheme is defined as
a scheme that evolves the nodal values of uh toward steady
state as follows.

1. ∀E ∈ h compute the residual or fluctuation

𝜙E = ∫E
(∇ ⋅ h − h) dx dy

= ∫𝜕E
h ⋅ n̂ dl − ∫

hdx dy (12)

2. ∀E ∈ h distribute fractions of 𝜙E to each node of E.
Denoting by 𝜙E

i the split residual or local nodal residual
for node i ∈ E, by construction one must have∑

j∈E

𝜙E
j = 𝜙E (13)

Equivalently, denoting by 𝛽E
i the distribution coefficient

of node i:

𝛽E
i =

𝜙E
i

𝜙E
(14)

one must have by construction∑
j∈E

𝛽E
j = 1 (15)

3. ∀i ∈ h assemble the contributions from all E ∈ i and
evolve ui in time by integrating the Ordinary Differential
Equation (ODE)

|Si|dui

dt
+

∑
E∈Di

𝜙E
i = 0 (16)

Note that the time derivative in (16) has the role of an
iterative means to get to the solution of the steady discrete
equations: ∑

E∈i

𝜙E
i = 0 ∀ i ∈ h (17)

The properties of the discrete solution are determined
by the distribution strategy, that is, by the choice of the
split residuals 𝜙E

j , or equivalently by the choice of the
𝛽E

j coefficients. Independently of this choice, however,
under reasonable continuity hypothesis on the 𝜙E

i ’s,
and assuming that the consistent approximation of the
flux h is continuous, the following LW theorem can
be proven (Abgrall et al., 2002; Abgrall and Mezine,
2003b).

Theorem 1. (Lax–Wendroff theorem for ) Given
bounded initial data u0 ∈ L∞(ℝ2), a square integrable
function u ∈ L2(ℝ2 ×ℝ+), and a constant C depending on
u0 and u such that the approximation uh(x, y, t) obtained
from (12)–(16) verifies

sup
h

sup
(x,y,t)

|uh| ≤ C lim
h→0

||uh − u||L2
loc(ℝ2×ℝ+) = 0

then u is a weak solution of the problem.

We will show that many  and  schemes can
be recast in the  formalism. However, before giving
examples of particular schemes, we recall general condi-
tions allowing to characterize the accuracy and the stability
of the discretization.

In the remaining text, we will omit the superscript E,
when the reference to a generic element E is clear from the
context.
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3.2 Accuracy of steady  discretizations

We consider the issue of the accuracy of the approxima-
tion for steady smooth problems. Even though second-order
schemes are the main focus of this contribution, we give a
definition of a kth order accurate scheme, and recall a neces-
sary condition for a  scheme to satisfy such definition.
We follow Abgrall and Mezine (2003b); Abgrall (2001); and
Abgrall and Roe (2003). The analysis is performed for the
scalar case, equation (4). The generalization to system (1) is
immediate.

The idea is to derive an estimate of how well a scheme
reproduces the weak formulation of the problem, in corre-
spondence of a smooth solution. Suppose a solution exists,
say w, such that ∇ ⋅  (w) = (w, x, y) in a pointwise manner.
Denote by wh the continuous piecewise polynomial approx-
imation in space of w (cf. equation (9)). We suppose that wh

is of degree k − 1, and kth order accurate. Consider then the
following quantity:

TE(wh) ∶=
∑
i∈h

𝜑i

(∑
E∈i

𝜙i(wh)

)
(18)

with 𝜑 a smooth compactly supported function 𝜙 ∈ Ck
0(Ω),

and 𝜑i = 𝜑(xi, yi). The notation 𝜙i(wh) indicates that the split
residuals have been evaluated starting from the continuous
interpolant of the nodal values of the exact solution w (and
of the exact flux and source term  (w) and (w, x, y)). We
recall that the superscript E has been dropped for simplicity.
We also recall that, as in (9), the summation in (18) extends
not only over the vertices of the grid but also over a properly
chosen set of nodes placed along the mesh edges and/or
within the elements (cf. Section 2.3).

Note that wh is not the numerical solution given by the
 scheme of Definition (1), but the k− 1 degree continuous
piecewise polynomial approximation of the smooth exact
solution w. Hence, in general TE(wh) ≠ 0. The magnitude of
this quantity describing how well an interpolant of the exact
solution satisfies the discrete equations is what we define
as being the truncation error. It gives an estimate on the
accuracy of the scheme. In particular we give the following
definition.

Definition 2. (kth order accuracy, steady problems) A
 scheme is said to be kth order accurate at steady state if
it verifies TE(wh) = (hk), for any smooth exact solution w,
with TE(wh) given by (18).

Consider now 𝜑h, the kth order accurate continuous piece-
wise polynomial interpolant of 𝜑, constructed starting from
the nodal values 𝜑i (cf. Section 2.3 and (18)). Owing to the
regularity of 𝜑 and the assumptions (8), we have

||𝜑||L∞(Ω) < C1|𝜑i − 𝜑j| ≤ ||∇𝜑||L∞(Ω)h < C2 h = (h)||∇𝜑h||L∞(Ω) < C3 (19)

for some finite positive constants C1, C2, and C3, eventually
depending on the mesh regularity constants in (8).

We now analyze the truncation error (18). We start by
rewriting it as

TE(wh) =
∑
E∈h

(∑
i∈E

𝜑i𝜙i(wh)

)
(20)

and write the term between brackets as∑
i∈E

𝜑i𝜙i(wh) =
∑
i∈E

𝜑i𝜙
G
i (wh) +

∑
i∈E

𝜑i(𝜙i(wh) − 𝜙G
i (wh))

= ∫E
𝜑h

(
∇ ⋅ h(wh) − h(wh, x, y)

)
dx dy

+
∑
i∈E

𝜑i

(
𝜙i(wh) − 𝜙G

i (wh)
)

with 𝜙G
i (wh) the Galerkin residual

𝜙G
i (wh) = 𝜙

G,a
i (wh) − 𝜙

G,s
i (wh) = ∫E

𝜓i∇ ⋅ h(wh) dx dy

−∫E
𝜓ih(wh, x, y) dx dy (21)

defined as the residual weighted with the continuous polyno-
mial basis functions 𝜓 i given in equation (9). Thus, equation
(20) becomes

TE(wh) = ∫Ω
𝜑h

(
∇ ⋅ h(wh) − h(wh, x, y)

)
dx dy

+
∑
E∈h

∑
i∈E

𝜑i

(
𝜙i(wh) − 𝜙G

i (wh)
)

Since
∑

i∈E(𝜙i(wh) − 𝜙G
i (wh)) =

∑
i∈E(𝜙h(wh) −

𝜙h(wh)) = 0 (cf. equation (11)), we can write

TE(wh) = ∫Ω
𝜑h

(
∇ ⋅ h(wh) − h(wh, x, y)

)
dx dy

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I

+

II
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1
K

∑
E∈h

∑
i∈E

∑
j∈E

(𝜑i − 𝜑j)
(
𝜙i(wh) − 𝜙G

i (wh)
)

where we recall that K is the total number of DOF (nodes)
contained in element E. In the last equation, the term
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I is associated to the error introduced by the choice of
the polynomial interpolation in space, while the second
term represents the additional error introduced by the 
discretization.

We first estimate I. Since by hypothesis w verifies (4) in a
pointwise manner, we have

∫Ω
𝜑h

(
∇ ⋅ h(wh) − h(wh, x, y)

)
dx dy

= ∫Ω
𝜑h

(
∇ ⋅ (h(wh) −  (w))

)
−∫Ω

𝜑h

(h(wh, x, y) − (w, x, y)) dx dy

We decompose the first integral in elemental contributions,
use Green–Gauss’ formula on each element, and sum up.
Owing to the continuity of h(wh) and 𝜑h across edges, and
the compactness of the support of 𝜑h, we get

∫Ω
𝜑h ∇ ⋅ (h(wh) −  (w)) dx dy

= −∫Ω
∇𝜑h (h(wh) −  (w)) dx dy = (hk)

provided that h(wh) is a kth order accurate approximation
of  (w), and thanks to (19). If h is also a kth order accurate
approximation of  , then (19) ensures that

∫Ω
𝜑h(h(wh, x, y) − (w, x, y)) dx dy = (hk) (22)

Hence, on a smooth solution, for kth order flux and source
term approximations, we have I = (hk).

Then we estimate II. We start by estimating 𝜙G
i (wh):

𝜙G
i (wh) = ∫E

𝜓i ∇ ⋅
(h(wh) −  (w)

)
dx dy

−∫E
𝜓i

(h(wh, x, y) − (w, x, y)) dx dy

= ∮𝜕E
𝜓i(h(wh) −  (w)) ⋅ n̂ dl

−∫E
(h(wh) −  (w)) ⋅ ∇𝜓i dx dy

+ ∫E
𝜓j

(h(wh, x, y) − (w, x, y)) dx dy

=(hk+1) + (hk+1) + (hk+2) = (hk+1)

(23)
having used (19), the fact that h and h are kth order accu-
rate, that ∇𝜓i = (h−1) (cf. equation (11)), the boundedness
of 𝜓 i, and the estimates |𝜕E| = (h), and |E| = (h2). Note

that the number of nodes in each element is bounded, while
the total number of elements in a regular (in the sense of (8))
triangulation is of (h−2). Owing to this and to (19), we get
for the error

TE(wh) =(hk) + (h−2) × (h) × (𝜙i(wh))

+(h−2) × (h) × (𝜙G
i (wh))

=(hk) + (h−1) × (𝜙i(wh))

where the quantity (𝜙i(wh)) denotes rather the supremum
over the nodes and over the elements of the magnitude of the
split residuals.

At last we have an error estimate allowing to formulate a
necessary condition for second order of accuracy.

Proposition 1. Given a smooth function 𝜑 ∈ Ck
0(Ω), satis-

fying the regularity assumptions (19). Given a triangulation
satisfying the regularity assumption (8). Given wh, the k − 1
degree, kth order accurate continuous piecewise polynomial
interpolant of w, a smooth exact solution to (4), and denoting
by h and h continuous kth order accurate approximations
to the exact flux and source term  (w), and (w, x, y) on h.
Then, in two space dimensions, a  scheme verifies the
truncation error estimate

TE(wh) ∶=
∑
i∈h

𝜑i

∑
E∈i

𝜙i(wh) = (hk) (24)

provided that the following condition is met:

𝜙i(wh) = (hk+1) ∀ i ∈ E and ∀ E ∈ h (25)

Condition (25) guarantees that formally the scheme
has an (hk) error. In practice, there is no guarantee
that this convergence rate is observed, unless some
other (stability) constraints are respected. For example,
even though it does verify the accuracy condition, the
Galerkin scheme (21) is known to be unstable when
applied to (4), and to diverge when the mesh is refined.
In this sense the condition of Proposition 1 is only
necessary.

Linearity or k-exactness preservation. The last proposi-
tion allows us to introduce an important class of schemes.
Given continuous and kth order accurate flux and source
terms approximations,h andh, for a smooth exact solution
one has

𝜙E(wh) = ∫E
(∇ ⋅ h(wh) − h(wh)) dx dy

= ∮𝜕E
(h(wh) −  (w)) ⋅ n̂ dl
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−∫E
(h(wh, x, y) − (w, x, y)) dx dy

=(hk+1) + (hk+2) = (hk+1) (26)

since |𝜕E| = (h) and |E| = (h2). As a consequence, we
can give the following characterization.

Definition 3. (Linearity or k-exactness preserving
scheme) A  scheme is linearity preserving ()
or more generally k-exactness preserving if its distribution
coefficients 𝛽 j defined in (14), are uniformly bounded with
respect to the solution and the data of the problem:

max
E∈h

max
j∈E

|𝛽j| < C <∞ ∀ 𝜙E, uh, u
0
h, …

 schemes satisfy by construction the necessary condition
for kth order of accuracy of Proposition 1.

The term  , initially introduced to refer to second-order
schemes of this type, is used here to denote in general 
schemes with uniformly bounded distribution coefficients.
In fact a better denomination is k-exactness preservation,
a term introduced by Barth (2003) in the context of 
schemes to denote schemes based on a kth degree polynomial
reconstruction.

Let us now give a few remarks on the choice of h. The
result of Proposition 1 is valid provided that h is kth order
accurate. A simple way to achieve this is to use for h

the same polynomial nodal interpolant as used for wh. This
greatly simplifies the computation of the residual, which can
be evaluated directly, by computing, once and for all, edge
integrals of the shape functions. This approach is similar
to the quadrature-free implementation of the discontinuous
Galerkin method (Atkins and Shu, 1996). Clearly, the more
expensive choice h(uh) =  (uh), with uh as in (9), is also
possible.

On the discrete treatment of source terms. The treatment
of the source terms deserves particular attention. Not only
is it important for a wide variety of applications, but its
analysis will also be useful when discussing the extension
of the schemes to time-dependent problems.

Note that the condition 𝜙E = (hk+1) is easily shown to
be verified with a k − 1th order accurate source term repre-
sentaion (cf. equation (26)). This is a bit misleading, since
one might conclude that a lower order approximation of the
source term would suffice. In reality, for the analysis to be
valid, condition (22) must also be satisfied, hence h really
needs to be a kth order approximation. A possible choice for
h is the same k − 1 degree piecewise polynomial as used for
wh, ultimately leading again to a quadrature-free algorithm
in which the integral of h only depends on integrals of the

basis functions, which can be stored in a preprocessing step.
Alternatively, one might choose a representation of the type
h = (uh, x, y), with uh as in (9), and chose a proper quadra-
ture formula to integrate it over an element. The accuracy of
such formula has to be consistent with estimate (22). For a
second-order scheme, for example, one could use

∫E
h(wh, x, y) dx dy = |E|h(wG, xG, yG)

where wG, xG, yG denote the solution value and coordinates
of the gravity center of element E.

Condition (25) can also be used to show that, in general,
pointwise discretizations of the source term are only
first-order accurate. We focus on the case of a piecewise
linear approximation of the unknown, and consider the
following variant of (16)

|Si|dui

dt
+

∑
E∈i

𝛽i𝜙
E,a = |Si|(ui, xi, yi) (27)

where 𝜙E, a denoted the advective element residual

𝜙E,a = ∫E
∇ ⋅ h(uh) dx dy

which, without loss of generality, we have assumed to be
distributed by means of a  scheme. Equation (27) is the
semidiscrete nodal approximation obtained when the forcing
term is approximated in a pointwise fashion. Scheme (27) is
obtained with the following definition of split residuals:

𝜙i(uh) = 𝛽i𝜙
E,a(uh) −

|E|
3

i

= ∫E

(
𝛽i∇ ⋅ h(uh) −

1
3
i

)
dx dy (28)

having set i = (ui, xi, yi). Let us now consider a smooth
exact solution of the problem w, and let us check what
condition (25) becomes for scheme (28). First of all, we note
that ∑

j∈E

𝜙j(uh) = 𝜙E,a(uh) −
|E|
3

∑
j∈E

j

= 𝜙E,a(uh) − ∫E
h dx dy

having denoted with h the piecewise linear approximation
of the source term obtained with (9). This approximation
is second order in smooth areas. Hence, with this approach
we can hope, at most, to reach second order of accuracy.
In particular, let us also assume that h is second order,
and let us now estimate the split residual (28) when it is
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evaluated on a discrete interpolant of the smooth exact solu-
tion w:

𝜙i(wh) = ∫E

(
𝛽i∇ ⋅ h(wh) −

1
3
i

)
dx dy

= ∫E

(
𝛽i∇ ⋅ h(wh) − 𝛽i∇ ⋅  (w)

+ 𝛽i(w, x, y) − 1
3
i

)
dx dy

= 𝛽i𝜙
E,a(wh − w)

+∫E

(
𝛽i(w, x, y) − 1

3
i

)
dx dy

having used the fact that ∇ ⋅  (w) − (w, x, y) = 0. One
easily sees that 𝜙E,a(wh − w) = (h3), and hence for (25) to
be verified in the case of second-order accuracy, we must
have

Is = ∫E

(
𝛽i(w, x, y) − 1

3
i

)
dx dy = (h3) (29)

One immediately recognizes that, apart from the unstable
central scheme obtained with the choice 𝛽 i = 1/3,
∀ i ∈ E (cf. Section 4), in general condition (29) is
never respected. In particular, the boundedness of 
and of i leads in the general case to the estimate
Is = (h2).

Proposition 2. ( schemes and pointwise source term)
Apart from the centered scheme obtained with 𝛽C

i = 1∕3,
∀ i ∈ E, a  distribution of the advective fluctuation 𝜙E, a

coupled with a pointwise source treatment leads in general
to a first-order accurate discretization. The centered scheme
is formally second-order accurate.

Numerical evidence to support the previous analysis and
last proposition can be found in Ricchiuto and Deconinck
(2002).

As a final remark, we note that one might think of
constructing schemes that still approximate the source term
in a pointwise manner by adding a proper correction to a
 scheme:

𝜙i = 𝛽i𝜙
E,a − |E|

3
i + Γi

By repeating the above accuracy analysis, using the fact that
on E we have  = i + ∇|i ⋅ (x⃗ − x⃗i) + (h2), and that for
the exact solution w one has∇|i ⋅ (x⃗ − x⃗i) = ∇(∇ ⋅  (w))|i ⋅
(x⃗ − x⃗i), it is easy to show that a second-order scheme can
still be obtained provided that 𝛽 i = 1/3, and that Γi is at least
a second-order approximation of

Γi ≈ −∫E
∇(∇ ⋅  (w))|i ⋅ (x⃗ − x⃗i) dx dy

Even though it is possible in theory, this technique has never
been investigated in literature. The main issues are how to
choose Γi in practice, and what the stability properties of the
final discretization would be.

3.3 Monotonicity: positive cell-vertex schemes
on unstructured grids

We now consider the issue of the nonoscillatory character
of the approximation. This characterization is achieved by
resorting to the theory of positive coefficient discretizations.
We focus on the homogeneous case  = 0, and only consider
continuous piecewise linear approximations, for which the
discrete unknowns are the values of the solution in the
vertices of the triangulation. We assume that we will be able
to write the split residuals as

𝜙i =
∑
j∈E
j≠i

cij(ui − uj) (30)

such that the semidiscrete form of the scheme reads (cf.
equations (12)–(16))

|Si|dui

dt
= −

∑
E∈i

∑
j∈E
j≠i

cij(ui − uj), ∀i ∈ h (31)

This is certainly possible in the case of the scalar advection
problem (5), and it is still admissible in the general nonlinear
case if (4) can be locally replaced by a properly linearized
version of its quasi-linear form

𝜕u
𝜕t

+ ã ⋅ ∇u = 0, a⃗(u) = 𝜕 (u)
𝜕u

For a linearly varying discrete solution, an example of such
an admissible linearization is the conservative mean-value
flux Jacobian

ã = 1|E|∫E
a⃗(uh) dx dy

The analysis reported here has the objective of giving condi-
tions on coefficients cij in (30), which guarantee the exis-
tence of a discrete maximum principle for the discrete solu-
tion. The first part of the analysis is an adaptation to the
case of the  method of the LED principles also used
in Barth (2003) and Barth and Ohlberger (2004) (see also
Spekreijse, 1987) for the analysis of  discretizations
on unstructured meshes. We then use these principles to
present a maximum principle analysis of schemes (12)–(16),
when the time derivative is integrated using a two-step
scheme.
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3.3.1 LED schemes and discrete maximum principle

We start by recalling the LED principle.

Proposition 3. (LED property) The prototype scheme
(31) is LED, that is, in the solution of the ODE (16)
local maxima are nonincreasing and local minima are
nondecreasing, if

c̃ij =
∑

E∈i ∩j

cij ≥ 0, ∀j ∈ i, j ≠ i and ∀i ∈ h (32)

Proof. From property (32) it follows that

dui

dt
= − 1|Si| ∑

E∈i

∑
j∈E
j≠i

cij(ui − uj)

= − 1|Si| ∑
j∈i

j≠i

⎛⎜⎜⎝
∑

E∈i ∩ j

cij

⎞⎟⎟⎠ (ui − uj)

= − 1|Si| ∑
j∈i

j≠i

c̃ij(ui − uj)

is ≤ 0 if ui is a local maximum (ui ≥ uj), and it is ≥ 0 if ui is
a local minimum (ui ≤ uj). Hence the result. ◽

The LED property guarantees that local extrema are kept
bounded by the numerical scheme. A stronger requirement
is obtained by requiring each cij to be positive, leading to a
subelement LED property:

Corollary 1. (Subelement LED) Scheme (31) is LED if
cij ≥ 0 ∀j ∈ E and ∀E ∈ i.

In order to obtain an estimate on the discrete solution,
fully discrete versions of (31) need to be analyzed. Here, we
consider the following two-level explicit and implicit time
discretizations: explicit (forward) Euler (FE), implicit (back-
ward) Euler (BE), Crank–Nicholson (CN) and trapezium
rule. For linear problems, the last two are equivalent. The
fully discrete version of (31) obtained with one of these
time-integration schemes can be compactly written intro-
ducing the 𝜃-scheme:

|Si|(un+1
i − un

i ) = −Δt
∑

E∈i

(
(1 − 𝜃)𝜙FE

i + 𝜃𝜙BE
i

)
(33)

with the forward Euler (FE) and backward Euler (BE) contri-
butions given by

𝜙FE
i =

∑
j∈E
j≠i

[cij(ui − uj)]n

𝜙BE
i =

∑
j∈E
j≠i

[cij(ui − uj)]n+1 (34)

The forward and backward Euler schemes, and the trapezium
scheme (equivalent to the  scheme for linear advection)
schemes are obtained from (33) for 𝜃 = 0, 𝜃 = 1, and 𝜃 = 1/2,
respectively. Denoting by Un and Un+1 the arrays containing
the nodal values of u at time tn and tn+1, the 𝜃-scheme can be
recast in the form:

 Un+1 =  Un (35)

where the matrices  and  are sparse with a fill-in pattern
given by the connectivity graph of the grid. The entries of
these matrices depend on the cij coefficients, the time step,
and Si:

ii = |Si| + 𝜃Δt
∑

E∈i

∑
j∈E
j≠i

cij

ij = −𝜃Δt
∑

E∈i

∑
j∈E
j≠i

cij

ii = |Si| − (1 − 𝜃)Δt
∑

E∈i

∑
j∈E
j≠i

cij

ij = (1 − 𝜃)Δt
∑

E∈i

∑
j∈E
j≠i

cij (36)

We have the following result.

Proposition 4. (Positivity – discrete maximum principle)
The space-time discrete analog of (4) in the time interval
[tn, tn+1] represented by the 𝜃-scheme (33), verifies the global
discrete space-time maximum principle

un
min = min

j∈h

un
j ≤ un+1

i ≤ max
j∈h

un
j = un

max (37)

and the local discrete space-time maximum principle given
by

ūi = min

⎧⎪⎨⎪⎩un
i ,min

j∈i

j≠i

(un
j , u

n+1
j )

⎫⎪⎬⎪⎭ ≤ un+1
i
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≤ max

⎧⎪⎨⎪⎩un
i ,max

j∈i

j≠i

(un
j , u

n+1
j )

⎫⎪⎬⎪⎭ = Ūi (38)

if the LED condition (32) holds and under the time-step
restriction

|Si| − (1 − 𝜃)Δt
∑

E∈i

∑
j∈E
j≠i

cij ≥ 0 ∀i ∈ h (39)

Under the same time-step constraint, the solution obtained
with the explicit FE scheme verifies the sharper bounds

ũn
i = min

j∈i

un
j ≤ un+1

i ≤ max
j∈i

un
j = Ũn

i (40)

In particular, the BE scheme verifies (37) and (38) ∀Δt > 0,
while the time step allowed by the  scheme is twice as
large as the one allowed by the positivity of the FE scheme.

Proof. The proof is obtained by noting that the LED condi-
tion (32) guarantees that ii ≥ 0 and ij ≤ 0 ∀j ≠ i inde-
pendently on Δt. Moreover,  is diagonally dominant since

|ii| − ∑
j∈i

j≠i

|ij| = |Si| > 0

Hence,  is an  matrix, and it is diagonally dominant.
This implies that  is invertible and −1 is positive (Berman
and Plemmons, 1979): −1

ij ≥ 0 ∀i, j. Consider now the array
Umin having the same length of Un and Un+1 but with
elements all equal to un

min. Thanks to the time-step restriction
(39), we have ij ≥ 0 ∀i, j. Hence

( Un)i ≥ ( Umin)i ∀i ∈ h

since un
i ≥ un

min ∀i ∈ h. Moreover

( Umin)i =
∑
j∈i

iju
n
min = |Si|un

min

=
∑
j∈i

iju
n
min = ( Umin)i

Since Un+1 = Un, this shows that (Un+1)i ≥ (Umin)i,
∀i ∈ h. The positivity of −1 ≥ 0 implies the left inequality
in (37). The right inequality is obtained in a similar way. ◽

The local bounds (38) are instead obtained by using the
positivity of the c̃ij coefficients (32). In fact, given Un+1, one

has for a node i

iiu
n+1
i +

∑
j∈i

j≠i

iju
n+1
j

=
⎛⎜⎜⎜⎝|Si| + 𝜃Δt

∑
j∈i

j≠i

c̃ij

⎞⎟⎟⎟⎠ un+1
i − 𝜃Δt

∑
j∈i

j≠i

c̃iju
n+1
j

= iiu
n
i +

∑
j∈i

j≠i

iju
n
j

=
⎛⎜⎜⎜⎝|Si| − (1 − 𝜃)Δt

∑
j∈i

j≠i

c̃ij

⎞⎟⎟⎟⎠ un+1
i + (1 − 𝜃)Δt

∑
j∈i

j≠i

c̃iju
n
j

Using the positivity of the c̃ij’s, the time-step restriction (39)
and the Definition (38) of Ui, one has

⎛⎜⎜⎜⎝|Si| + 𝜃Δt
∑
j∈i

j≠i

c̃ij

⎞⎟⎟⎟⎠ un+1
i =

⎛⎜⎜⎜⎝|Si| − (1 − 𝜃)Δt
∑
j∈i

j≠i

c̃ij

⎞⎟⎟⎟⎠ un+1
i

+ (1 − 𝜃) Δt
∑
j∈i

j≠i

c̃iju
n
j

+𝜃Δt
∑
j∈i

j≠i

c̃iju
n+1
j

≤
⎛⎜⎜⎜⎝|Si| + 𝜃Δt

∑
j∈i

j≠i

c̃ij

⎞⎟⎟⎟⎠ Ūi (41)

which gives the right bound in (38). The left bound is
obtained in a similar way. For the explicit FE scheme, the
sharper bounds (40) are instead readily obtained by noting
that

un+1
i =

⎛⎜⎜⎜⎝1 − Δt|Si| ∑
j∈i

j≠i

c̃ij

⎞⎟⎟⎟⎠ un
i +

Δt|Si| ∑
j∈i

j≠i

c̃iju
n
j

= c̄iiu
n
i +

∑
j∈i

j≠i

c̄iju
n
j =

∑
j∈i

c̄iju
n
j

Bounds (40) are easily verified using the fact that c̄ij ≥ 0
∀ i j, owing to (32) and (39), and that

∑
j∈i

c̄ij = 1. The last
assertion of the proposition is easily checked by comparing
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the limiting values of the time step obtained by taking 𝜃 = 0,
𝜃 = 1/2, and 𝜃 = 1 in (39).

Definition 4. (Positive scheme) A scheme of the form (33)
respecting Proposition 4 is said to be positive.

As done for the LED property, we introduce a local form of
positivity. First, we note that the components of the  and 
matrices can be decomposed as a sum of local contributions:

 =
∑
E∈h

E,  =
∑
E∈h

E

where ij,ij = 0 ∀i, j ∉ E, and for i, j ∈ E one has

E
ii =

|E|
3

+ 𝜃Δt
∑
j∈E
j≠i

cij, E
ij = −𝜃Δt

∑
j∈E
j≠i

cij

E
ii =

|E|
3

− (1 − 𝜃)Δt
∑
j∈E
j≠i

cij

E
ij = (1 − 𝜃)Δt

∑
j∈E
j≠i

cij (42)

With this notation we have the following trivial result.

Proposition 5. (Local positivity – discrete maximum
principle) The space-time discrete analog of (4) in the
time interval [tn, tn+1] represented by the 𝜃-scheme (33)
verifies the global space-time discrete maximum principle
(37) and the local space-time discrete maximum principle
(38) and (40) in the explicit case 𝜃 = 0), if the subelement
LED condition holds and under the time-step restriction

|E|
3

− (1 − 𝜃)Δt
∑
j∈E
j≠i

cij ≥ 0 ∀i ∈ E and ∀E ∈ h (43)

In particular, the BE scheme verifies (37) and (38) ∀Δt > 0,
while the time-step restriction of the  scheme is twice
less severe than the one guaranteeing the local positivity of
the FE scheme.

Definition 5. (Locally positive scheme) A scheme veri-
fying Proposition 5 is said to be locally positive.

The last proposition shows that local positivity implies
positivity. It seems quite disappointing that an implicit
scheme must respect a time-step restriction of the same
order as the one of the explicit FE scheme in order to
preserve the monotonicity of the discretization. Unfortu-
nately, it can be shown that, for high-order time-integration

schemes, this limitation has a quite general character (Bolley
and Crouzeix, 1978). Finally, following Barth (2003) and
Barth and Ohlberger (2004), we mention two important
corollaries of Proposition 4. The first is that, thanks to the
positivity of the c̃ij coefficients implied by condition (32), we
have the following:

Proposition 6. (Steady-state discrete maximum prin-
ciple) Under the hypothesis that the c̃ij coefficients in (32)
are all positive, the steady limit of (33) verifies the local
maximum principle in space given by

min
j∈i

j≠i

u∗j ≤ u∗
i ≤ max

j∈i

j≠i

u∗j (44)

where the superscript * denotes the steady limit u∗j = lim
n→∞

un
j .

The second and more important consequence is that the
solution respects at all times the L∞ stability bounds:

Theorem 2. (L∞-stability) If the hypotheses of proposi-
tion 4 are verified in all the time slabs {[tn, tn+1]}, with n = 0,
… , M − 1, then scheme (33) is L∞-stable and the following
bounds hold for its numerical solution:

min
i∈h

u0
i ≤ un

j ≤ max
i∈h

u0
i , ∀i ∈ h, n ∈ [1,M] (45)

3.4 Linear schemes and Godunov’s theorem

It is desirable to have a scheme that is both second-order
accurate and that respects a discrete maximum principle. It
is known that this is not possible, unless the local struc-
ture of the solution is somehow monitored by the cij coeffi-
cients. This is formally expressed by the following definition
and theorem (Godunov, 1961; Paillère, 1995; Abgrall and
Mezine, 2003b).

Definition 6. (Linear scheme) A scheme of the form (31)
is said to be linear if all the cij are independent on the
numerical solution.

Theorem 3. Linear positive  schemes cannot be more
tha first-order accurate.

3.5 Energy stability

After having characterized the accuracy and monotonicity
(L∞ stability) of the discretization, we consider a different
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type of stability, related to the dissipative behavior of the
schemes: the energy stability. We focus on the scalar linear
case of (5) with  = 0, and on piecewise linear discrete vari-
ation of the solution. It is known that the advection equation
is characterized by a bound on the L2 norm of its exact solu-
tions: the energy (Evans, 1998). At the discrete level, this
translates into a stability criterion: for stable schemes energy
attains its maximum value at t = 0, that is, energy is dissi-
pated by stable discretizations. In this section, we give esti-
mates for the evolution in time of the energy of the solution
obtained by scheme (31). The analysis is inspired by Barth
(1996).

We start by rewriting the prototype scheme in the compact
vector form

D|Si| dU
dt

= −U (46)

and introducing the discrete analog of the energy of the
solution

h =
UTD|Si|U

2
= ∫Ω

hdx dy,  = 1
2

u2 (47)

with h piecewise linear, as in (9). The stability of the
schemes can be characterized by analyzing

dh

dt
= −UT  + T

2
U = −UTMh U (48)

We start with giving the following definition.

Definition 7. (Energy stable scheme – semidiscrete form)
The prototype scheme in semidiscrete form (31) is energy
stable if

dh

dt
= −UTMh U ≤ 0 (49)

It is common experience that schemes yielding monotone
numerical solutions, such as LED and positive schemes, also
exhibit a dissipative behavior, that is, sharp profiles of the
solution are smeared as if a viscous diffusion mechanism was
present. To characterize our prototype scheme (31) from the
energy point of view, we look at the form of the Mh matrix.
In particular, from (48) and (31) we have

Mh

ii =
∑
j∈i

j≠i

c̃ij, Mh

ij = −1
2
(c̃ij + c̃ji)

= −
∑

E∈i∩j

cij + cji

2

For LED schemes Mh has positive entries on the diagonal
and negative off-diagonal terms. However, this is not enough

to ensure positive semidefiniteness, unless the matrix is also
irreducibly diagonally dominant (Berman and Plemmons,
1979). In particular, some of the schemes we consider in this
paper can be characterized by the following property.

Proposition 7. (Energy stability of LED schemes –
semidiscrete case) A scheme of the form (31) verifying the
LED condition (32) is energy stable in the sense of Definition
7 if ∑

j∈i

j≠i

c̃ij =
∑
j∈i

j≠i

c̃ji ∀i ∈ 𝜏h (50)

Proof. Simple manipulations allow to recast the quadratic
form on the right-hand side in (48) as

UTMh U =

≥0
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1
2

∑
i,j∈hi∩j≠0

(ui − uj)
c̃ij + c̃ji

2
(ui − uj)

+
∑
i∈h

ui

⎛⎜⎜⎜⎝
∑
j∈i

j≠i

c̃ij − c̃ji

2

⎞⎟⎟⎟⎠ ui

The LED condition (32) guarantees that the first sum
is non-negative. Moreover, if condition (50) is verified,
the second term in the last equation vanishes, and hence
UTMh U ≥ 0, which is the desired result. ◽

Additional information is obtained by including the
temporal discretization in the analysis. For the 𝜃 scheme
(33) we have the following result.

Proposition 8. (Discrete energy stability –𝜽 scheme)
The family of schemes represented by the 𝜃 scheme (33)
verify the following fully discrete energy balance

h
n+1 = h

n − Δt(𝜃Un+1 + (1 − 𝜃)Un)T

× Mh(𝜃Un+1 + (1 − 𝜃)Un) − (2𝜃 − 1)𝜖h (51)

with the discrete time energy production 𝜖h given by

𝜖h = 1
2
(Un+1 − Un)T D|Si|(Un+1 − Un) ≥ 0

The time discretization has a stabilizing effect for 𝜃 > 1/2 and
a destabilizing effect for 𝜃 < 1/2. In particular, the explicit
FE time discretization has the maximum energy destabilizing
character and the implicit BE scheme is the most stable.
The  scheme is the only one preserving the dissipation
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properties of the spatial discretization. For this reason the
 scheme is said to be energy conservative.

Proof. The proof reduces to showing that the balance (51)
is true. The remaining assertions are trivially verified by
analyzing the sign of the additional term in the balance,
governed by the quantity 2𝜃 − 1. The energy balance is easily
obtained by first noting that

𝜃un+1
i + (1 − 𝜃)un

i =
un+1

i + un
i

2

+ (2𝜃 − 1)
un+1

i − un
i

2
∀i ∈ h

Upon multiplication of (33) by 𝜃un+1
i + (1 − 𝜃)un

i and
summing the expression thus obtained to its transpose, we
obtain the desired result. ◽

The last proposition shows that while implicit schemes
with 𝜃 > 1/2 might stabilize space discretizations, which,
by themselves, are not energy stable, the use of the FE
scheme (or, in general, of schemes with 𝜃 < 1/2) might spoil
the stability of the spatial discrete operator. These compet-
itive effects are controlled by the magnitude of the time
step. For stable space discretizations, one might then seek a
limiting value of Δt for the time discretization guaranteeing
the stability of explicit schemes. This study, not undertaken
here, can lead sometimes to time-steps constraints for energy
stability that are stricter than the ones that have been proved
to yield positivity (see e.g. Tadmor, 2003).

4 EXAMPLES OF / SCHEMES FOR
STEADY ADVECTION

We finally give some examples of  schemes. This is done
for the case of the advection equation (5). In this case, the
element residual 𝜙E can be expressed in a simple analytical
form. For uh andh both piecewise linear, as in (9), and using
the properties of the basis functions (11), one easily shows

𝜙E = ∫E
(a⃗ ⋅ ∇uh − h) dx dy =

∑
j∈E

kj uj −
∑
j∈E

|E|
3

j (52)

where kj denotes the scalar

kj =
1
2

a⃗ ⋅ n⃗j (53)

with n⃗j the scaled inward normal of Figure 1. The kj param-
eters in (52) can be used as sensors to distinguish between
downstream and upstream nodes. In particular, kj > 0 only if

a⃗ is oriented as n⃗j, and hence only if node j is downstream.
Note that, owing to (6), one also has the identity∑

j∈E

kj = 0 (54)

With this notation, we will recall in the following section
well-known equivalences between cell-vertex first-order 
schemes, linear  schemes, and  schemes. The presen-
tation of these more classical methodologies will give addi-
tional input for the analysis of discretizations, which can only
be constructed in the  framework: the  schemes. We
mainly focus our attention on the homogeneous case  = 0.

4.1 Finite-volume schemes in  formalism

On the dual mesh composed of the median dual cells,
consider the piecewise constant approximation u′h, with
u′h|Si

= ui ∀ i ∈ h. We consider first-order  schemes for
which the semidiscrete counterpart of (5) in the homoge-
neous case reads

|Si|dui

dt
= −∮𝜕Si

h(u′h) ⋅ n̄dl = −
∑

lij∈𝜕Si

Hh(ui, uj) ⋅ n⃗ij

where H(u, v) is the  numerical flux, respecting H(u, u) =
 (u), lij is the portion of 𝜕Si separating Si from Sj (see
Figure 2a), nij is the exterior unit normal to 𝜕Si on lij, and n⃗ij =|lij|n̄ij is the scaled exterior normal as in Figure 2(b). With
reference to this picture, we can easily recast the right-hand
side in last equation as a sum of contributions coming from
elements in i:

|Si|dui

dt
= −

∑
E∈i

∑
j∈E
j≠i

H(ui, uj) ⋅ n⃗ij

The definition of the median dual cell (see Figure 2), and the
fact that the hull composed by the edges opposite to i is closed
(see Figure 3), imply the following geometrical identities

∑
j∈E
j≠i

n⃗j

2
= −

n⃗i

2
=

∑
j∈E
j≠i

n⃗ij and
∑

E∈i

n⃗i = 0 (55)

Using these identities, one easily shows that the  semidis-
crete equation can be equivalently recast as

|Si|dui

dt
= −

∑
E∈i

∑
j∈E
j≠i

(H(ui, uj)

−H(ui, ui)) ⋅ n⃗ij, H(ui, ui) =  (ui)
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Figure 2.  scheme. Neighboring cells Si and Sj (a) and cell
normals (b).

Closed hull

(b)(a)
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E2i

i
n1
→

n2
→

∂Ω

∂Ω

Figure 3. Closed hull around node i.

We consider now the family of flux functions defined as

H(ui, uj) =
 (ui) +  (uj)

2
⋅ n⃗ij −

1
2

D(ui, uj)(uj − ui) (56)

with D(ui, uj) a dissipation matrix (e.g. Roe’s absolute value
matrix Roe, 1981) satisfying the symmetry condition D(ui,
uj) = D(uj, ui). With this definition, the  scheme can be
written as

|Si|dui

dt
= −

∑
E∈i

𝜙i, 𝜙i =
1
2

∑
j∈E
j≠i

(( (uj) −  (ui))

⋅n⃗ij − D(ui, uj)(uj − ui)) (57)

For the last expression to define a  scheme, the 𝜑i’s
must verify the consistency condition (13), for a continuous
approximation of the flux. The symmetry of D(ui, uj), rela-
tion n⃗ij = −n⃗ji, and the first in (55), easily lead to∑

i∈E

𝜙i =
∑
i∈E

1
2
 (ui) ⋅ n⃗i

corresponding to (12) integrated exactly for a continuous
piecewise linear approximation of the flux h, as the one
obtained with (9), and reducing precisely to (52) for constant
(homogeneous) advection. The analogy extends to nonlinear
problems, and systems as well (Abgrall et al., 2002).

The Upwind  Scheme: Positivity and Energy Stability
For scalar advection, the most natural choice for H(u, v) is
the upwind flux

H(ui, uj) =
 (ui) +  (uj)

2
⋅ n⃗ij −

1
2

||||𝜕𝜕u
⋅ n⃗ij

||||ij(uj − ui)

which for this linear problem reduces to

H(ui, uj) = kij

(ui + uj)
2

−
|kij|

2
(uj − ui), kij = a⃗ ⋅ n⃗ij (58)

using which we finally arrive at the upwind  −
scheme defined by Paillère (1995)

Si|dui

dt
= −

∑
E∈i

𝜙−
i

𝜙−
i = −

∑
j∈E
j≠i

k−ij (ui − uj) (59)

Scheme (59) is of the form (31) with cij = −k−ij ≥ 0, and
hence it verifies the subelement LED condition. It verifies
Propositions 4, 5, and 6, and Theorem 2, and the related
stability bounds. In particular, the time-step restrictions for
its positivity and local positivity are given by

Δt ≤ |Si|
(1 − 𝜃)

∑
E∈i

∑
j∈E
j≠i

−k−ij
,∀i ∈ h

and

Δt ≤ |E|
3(1 − 𝜃)

∑
j∈E
j≠i

−k−ij
, ∀E ∈ i,∀i ∈ h (60)

with 𝜃 ∈ [0, 1). Unconditional positivity is obtained with BE
time integration. For this scheme, the distribution coefficients
are not explicitly defined. They have to be computed as
𝛽−

i = 𝜙−
i ∕𝜙E, and their boundedness for 𝜙E → 0

is not guaranteed. Hence, the scheme is not . First order of
accuracy is observed in practice. However, since kij = − kji,
making use of the first identity in (55), and of the definitions
of kij and ki, we have∑

j∈E

(cij − cji) = −
∑
j∈E

(k−ij k
−
ji )

= −1
2

∑
j∈E

(kij − |kij| + kij + |kij|)
= −

∑
j∈E

kij = ki
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Owing to the second relation in (55), for constant advection∑
E∈i

ki = 0, which proves that the upwind - scheme
respects the energy stability criteria of proposition 7. Note
that, with reference to Figure 3(b), for a boundary node
i ∈ 𝜕Ω the last sum is not zero but it is given by∑

E∈i

ki = −1
2

a⃗ ⋅ (n⃗1 + n⃗2)

with the inward normals to the boundary n⃗1 and n⃗2 scaled by
the length of the edges. When included in the energy balance,
these terms give an approximation of the energy flux across
𝜕Ω, the energy balance becoming (see (47) and (48))

dh

dt
= −UTMh U − 1

2∮𝜕Ωh(a⃗ ⋅ n̂) dl

with n̂ the exterior unit normal to 𝜕Ω, and h. How to handle
this extra term is shown in the next section.

4.2 Central and finite-element () schemes

We now consider another family of discretizations, which
originally were not formulated as  schemes, but that natu-
rally admit a  formulation. They are all variations of a
central scheme obtained by equidistributing the residual to
the nodes of an element. We start by showing the equivalence
of this centered scheme with the Galerkin discretiza-
tion of (5). For steady constant advection, and neglecting the
BC terms, the P1 Galerkin  scheme reads

∫Ω
𝜓ia⃗ ⋅ ∇uh dx dy = 0 ∀i ∈ h (61)

with 𝜓 i the linear basis functions (11), and uh as in (9). In the
case of a constant advection speed, using the compactness
of the support of the basis functions and (11), the Galerkin
scheme can be immediately recast as∑

E∈i

1
3
𝜙E = 0 ∀i ∈ h

which is nothing else but the steady-state discrete approxi-
mation of the advection equation with the centered -
scheme with distribution coefficients

𝛽C
i = 1

3
(62)

For constant advection speed a⃗, this centered  scheme is
then exactly equivalent to the  Galerkin scheme.

4.2.1 Petrov–Galerkin schemes and streamline
dissipation

The Galerkin method is known to be unstable when approx-
imating the advection equation. Consider then the stabilized
PG schemes, obtained by adding to the Galerkin discretiza-
tion a so-called streamline dissipation term (Hughes and
Brook, 1982; Hughes and Mallet, 1986; Johnson, 1987;
Szepessy, 1989):

∫Ω
𝜓ia⃗ ⋅ ∇uh dx dy

+
∑
E∈h

∫E
𝜏(a⃗ ⋅ ∇𝜓i)(a⃗ ⋅ ∇uh) dx dy

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
PG streamline dissipation

= 0 ∀i ∈ h (63)

In the case of a constant advection speed a⃗, proceeding as
before, we quickly arrive at

0 =
∑

E∈i

1
3
𝜙E +

∑
E∈i

𝜏
ki

2|E|𝜙E

=
∑

E∈i

𝜙C
i +

∑
E∈i

𝜏
ki

2|E|𝜙E ∀i ∈ h (64)

which shows the equivalence of stabilized streamline dissipa-
tion Galerkin  scheme with the class of - schemes
defined by the distribution coefficient

𝛽SD−G
i = 1

3
+ 𝜏

ki

2|E| with 𝜏 ≥ 0, 𝜏 = 
(

h||a⃗||
)

(65)

This analogy is of course known for a long time (Carette
et al., 1995; Paillère, 1995). However, strictly speaking the
analogy is an equivalence only in the constant coefficients
case, while in general the  and the  schemes give
different discrete equations since the integrals in (63) no
longer reduce to (64). The streamline dissipation terms intro-
duce some kind of upwind bias in the distribution, since we
have (see also Section 4.3)

𝛽SD−G
i > 𝛽C

i if i is downstream, hence ki > 0

𝛽SD−G
i < 𝛽C

i if i is upstream, hence ki < 0

The stabilization mechanism introduced by this upwind bias
is better understood by looking at the energy stability of the
schemes.

4.2.2 PG schemes: energy stability

Streamline-diffusion  schemes have well-known energy
stability properties that we will recall here. The energy
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balance of the streamline diffusion galerkin (SD-G) scheme
reads

dSD−G
h

dt
= −

∑
E∈h

∑
i∈E

∑
j∈E

1
3

uikjuj

−
∑
E∈h

∑
i∈E

∑
j∈E

ui

ki𝜏kj

2|E| uj =
dC

h

dt
− 𝜖SD

h (66)

Owing to the properties of the basis functions, if a⃗ is constant,
one easily shows that∑

i∈E

∑
j∈E

1
3

uikjuj = ∫E
uha⃗ ⋅ ∇uh dx dy

𝜖SD
h =

∑
E∈h

1
2|E| ⎡⎢⎢⎣

k1u1
k2u2
k3u3

⎤⎥⎥⎦
T ⎡⎢⎢⎣
𝜏 0 0
0 𝜏 0
0 0 𝜏

⎤⎥⎥⎦
⎡⎢⎢⎣
k1u1
k2u2
k3u3

⎤⎥⎥⎦ ≥ 0 (67)

showing that the upwind bias of the streamline-diffusion
adds an L2 stabilizing dissipation mechanism. Finally, the
global balance can be recast as

dSD-G
h

dt
= −

∑
E∈h

∫E
uha⃗ ⋅ ∇uh dx dy − 𝜖SD

h

= −∫Ω
uha⃗ ⋅ ∇uh dx dy − 𝜖SD

h (68)

Unless the boundary conditions are taken into account, this
only shows that a dissipative mechanism is present, through
the 𝜖SD

h term. For simplicity, suppose that homogeneous
BCs are prescribed. To be completely faithful to the 
formulation, the BCs should be included in the variational
formulation (63) using the admissibility condition (Barth,
1998)

min(a⃗ ⋅ n̂, 0)u = (a⃗ ⋅ n̂)−u = 0 on 𝜕Ω

with n̂ the exterior normal to 𝜕Ω. Here we suppose that the
BCs are imposed in a strong nodal sense, such that

∮𝜕Ωuh(a⃗ ⋅ n̂)−uh dl = 0 (69)

either because we impose uh = 0 (inflow boundary, (a⃗ ⋅ n̂)− ≤
0), or because (a⃗ ⋅ n̂)− = 0 (outflow boundary). We then
rewrite the energy estimate (68) as

dSD−G
h

dt
= −∫Ω

uha⃗ ⋅ ∇uh dx dy − 𝜖SD
h

= −1
2∮𝜕Ωuh(a⃗ ⋅ n̂)uh dl − 𝜖SD

h

= −∮𝜕Ω(uh)(a⃗ ⋅ n̂) dl − 𝜖SD
h

= −∮𝜕Ω(uh)|a⃗ ⋅ n̂| dl − 2∮𝜕Ω(uh)(a⃗ ⋅ n̂)− dl − 𝜖SD
h

having used the identity a⃗ ⋅ n̂ = 2(a⃗ ⋅ n̂)− + |a⃗ ⋅ n̂|, and (47).
Using the BCs (69), we obtain the stability estimate

dSD-G
h

dt
= −∮𝜕Ω(uh)|a⃗ ⋅ n̂| dl − 𝜖SD

h ≤ 0 (70)

As already remarked, a faithful analysis would have included
the boundary conditions directly into the variational formu-
lation. This, however, would have led precisely to estimate
(70) (Barth, 1998). The analysis shows that the total energy
production can be split into the energy dissipation intro-
duced by the upwind bias (𝜖SD

h ) plus the energy production
due to the centered discretization. The latter is then simpli-
fied taking into account the boundary conditions, finally
obtaining an energy stability estimate.

4.2.3 The Rusanov scheme

Among the central schemes, we also report the LED
Rusanov’s (Rv) scheme (Rusanov, 1961; Abgrall and
Mezine, 2003b; Abgrall and Mezine, 2004) defined by

𝜙Rv
i = 1

3
𝜙E + 1

3
𝛼
∑
j∈E
j≠i

(ui − uj), 𝛼 ≥ max
j∈E

|kj| > 0 (71)

The Rv scheme is obtained by adding to the centered scheme
a stabilizing term. To see this, we rewrite (71) as

𝜙Rv
i = 1

3

∑
j∈E

kjuj +
1
3
𝛼
∑
j∈E
j≠i

(ui − uj)

= −1
3

∑
j∈E
j≠i

kj(ui − uj) +
1
3
𝛼
∑
j∈E
j≠i

(ui − uj)

= 1
3

∑
j∈E
j≠i

(𝛼 − kj)(ui − uj)

where (54) has been used in the second equality. The Rv
scheme can be recast as in (31) with 3cij = (𝛼 − kj) ≥ 0 (by
definition of 𝛼). Hence, the scheme respects the subele-
ment LED condition, and it verifies Propositions 4–6, and
Theorem 2. The time-step restrictions for its positivity and
local positivity read
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Δt ≤ 3|Si|
(1 − 𝜃)

∑
E∈i

∑
j∈E
j≠i

(𝛼 − kj)
, ∀i ∈ h

and

Δt ≤ |E|
(1 − 𝜃)

∑
j∈E
j≠i

(𝛼 − kj)
, ∀E ∈ i, ∀i ∈ h (72)

with 𝜃 ∈ [0, 1). The Rv scheme is unconditionally posi-
tive when BE time integration is used in (16). The distri-
bution coefficients of the Rv scheme are not guaranteed to
be bounded, and hence the scheme is not  . The energy
stability of the Rv scheme can be easily shown noting that

dRv
h

dt
= −

∑
E∈h

∑
i∈E

∑
j∈E

1
3

uikjuj

−1
3

∑
E∈h

∑
i∈E

∑
j∈E

ui𝛼(ui − uj) =
dC

h

dt
− 𝜖Rv

h (73)

with the dissipation term reading

𝜖Rv
h =

∑
E∈h

1
3

⎡⎢⎢⎣
u1 − u2
u1 − u3
u2 − u3

⎤⎥⎥⎦
T ⎡⎢⎢⎣
𝛼 0 0
0 𝛼 0
0 0 𝛼

⎤⎥⎥⎦
⎡⎢⎢⎣
u1 − u2
u1 − u3
u2 − u3

⎤⎥⎥⎦ ≥ 0

since 𝛼 ≥ 0, ∀ E ∈ h (74)

Proceeding as for the PG scheme, we obtain the energy
estimate

dRv
h

dt
= −∮𝜕Ω(uh)|a ⋅ n̂|dl − 𝜖Rv

h ≤ 0 (75)

4.3 A truly multidimensional upwinding strategy

For a linear (or linearized) problem in quasi-linear form, the
residual can be expressed as in (52). We consider now the
homogeneous case  = 0, and recast (52) in an alternate
form. Using the upwind parameters

k+j = max(0, kj), k−j = min(0, kj) (76)

and the identity kj = k+j + k−j , one has

𝜙E =
∑
j∈E

k+j uj +
∑
j∈E

k−j uj

=

(∑
j∈E

k+j

)(∑
j∈E

N k+j uj +
∑
j∈E

N k−j uj

)

having introduced the quantity

N =

(∑
j∈E

k+j

)−1

= −

(∑
j∈E

k−j

)−1

= 1
2

(∑
j∈E

|kj|)−1

> 0

(77)
Defining the inflow and outflow states of element E

uin =

∑
j∈E

k−j uj∑
j∈E

k−j
= −

∑
j∈E

N k−j uj and uout =
∑
j∈E

N k+j uj

(78)
the residual can be written as (Paillère, 1995)

𝜙E = M (uout − uin), M =
∑
j∈E

k+j = N−1 (79)

To give a geometrical interpretation of (79) we observe that
the inflow and outflow states represent the values of uh in the
most upstream (resp. most downstream) node of the E, with
respect to the streamline 𝜁 cutting the triangle (see Figure 4),
that is uout = uh(x⃗out) and uin = uh(x⃗in), with (Paillère, 1995):

x⃗out =
∑
j∈E

Nk+j x⃗j , x⃗in = −
∑
j∈E

Nk−j x⃗j

Hence, the residual (79) represents a one-dimensional
balance along 𝜁 . This framework gives the basis for a truly
multidimensional generalization of concepts derived from
the study of one-dimensional advection. Depending on how
a⃗ is oriented in E, we can distinguish two situations (see
Figure 4). If a⃗ points in the direction of a single point of E,
as in (a), then this point coincides with the outflow point and
is the only downstream point. In this situation the element
is said to be 1-target. Conversely, if a⃗ points in the direction
of one of the edges of E, as in (b), then there is only one
upstream point coinciding with the inflow point. In this
situation, the element is said to be 2-target. If E is 1-target,
then there is a node j such that

kj = k+j > 0, k−j = 0 and kl = k−l < 0, k+l = 0 ∀l ≠ j

Similarly, if E is 2-target, then there is a node k such that

kk = k−k < 0, k+k = 0

and kl = k+l > 0, k−l = 0 ∀l ≠ k

This distinction allows to build discretizations taking into
account in a real multidimensional way the propagation
of the information described by the advection equation. In
particular, we define the following class of schemes.

Definition 8. A  scheme is multidimensional upwind
( ) if
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1. in a 1-target element E, if kj > 0 and ki, kk < 0, then:
𝜙j = 𝜙h and 𝜙i = 𝜙k = 0.

2. in a 2-target element E, if kk < 0 and ki, kj > 0, then:
𝜙k = 0.

Clearly,  schemes reduce to 1D upwind schemes
along the streamline cutting the triangle: all the informa-
tion contained in the fluctuation is sent to the outflow point.
This is an important simplification: all  schemes are
equivalent in the 1-target case, different  schemes are
defined just by choosing different distribution strategies in
the 2-target case. The geometrical framework of Figure 4
allows to perform this choice on the basis of heuristics
making use of the directional propagation of the information
that characterizes exact solutions. There are quite a number
of possible choices (Paillère, 1995; Roe, 1987). Here, only
two of these will be analyzed in more detail. Before that, we
recall the following simple result.

Proposition 9. ( schemes, LED,  property and
energy stability: 1-target case) In the 1-target configura-
tion,  schemes are  and positive. Moreover, they are
locally dissipative.

Proof. Let us locally number as (1, 2, 3) the nodes of
the 1-target triangle T. Suppose 1 is the only downstream
node: k1 > 0, k2, k3 < 0. One immediately shows that a 
scheme is  , by noting that

𝜙1 = 𝜙E(uh), 𝜙2 = 𝜙3 = 0 =⇒ 𝛽1 = 1, 𝛽2 = 𝛽3 = 0

which are clearly uniformly bounded. Positivity is quickly
checked by noting that

𝜙1 = 𝜙E =
∑
j∈T

kjuj = −k2(u1 − u2)

−k3(u1 − u3) = c12(u1 − u2) + c13(u1 − u3)

with c12, c13 ≥ 0 by hypothesis, and having used (54). Lastly,
we show that the scheme is locally dissipative. With the
notation of (47), we note that we can write for the total energy
of the solution

𝜕h

𝜕t
= ∫Ω

𝜕h

𝜕t
= ∫Ω

∑
i∈h

𝜓i

𝜕i

𝜕t
=

∑
i∈h

|S|i 𝜕i

𝜕t

=
∑
i∈h

ui|S|i 𝜕ui

𝜕t
= −

∑
i∈h

∑
E∈i

ui𝜙i

= −
∑
E∈h

∑
j∈E

uj𝜙j = −
∑
E∈h

𝚽E = −𝚽 (80)

(b)(a)

k

i

i

j
uj = uout

uk = uin

uout

uin

a
→

a
→

ζ

ζ

Figure 4. Inflow and outflow state. One-target (a) and two-target
element (b).

As seen earlier, a dissipative (viz. energy stable) scheme
verifies 𝚽 = ∮𝜕Ωha⃗ ⋅ n̂ dl + 𝜖 with 𝜖 ≥ 0. Hereafter, we
show that for a  scheme one has in the 1-target case

ΦE = ∮𝜕E
ha⃗ ⋅ n̂ dl + 𝜖1-target

 , 𝜖1-target
 ≥ 0

Recalling that we assumed node 1 to be the only downstream
node, a direct calculation shows that

𝜖1-target
 =𝚽E − ∮𝜕E

ha⃗ ⋅ n̂ dl

= u1𝜙
E(uh) − ∫E

a⃗ ⋅ ∇h dx dy

=
∑
j∈E

u1kjuj −
∑
j∈E

1
2

ujkjuj = UTM1-targetU

= 1
2

UT (M1-target + MT
1-target)U = UTMsymm

1-targetU

where U denotes the array U = [u1 u2 u3], and with M1-target

and Msymm
1-target given by

M1-target =
1
2

⎡⎢⎢⎣
k1 2 k2 2 k3
0 −k2 0
0 0 −k3

⎤⎥⎥⎦
Msymm

1-target =
1
2

⎡⎢⎢⎣
k1 k2 k3
k2 −k2 0
k3 0 −k3

⎤⎥⎥⎦
We see that Msymm

1-target has positive diagonal and nonpositive
off-diagonal entries; moreover, the row and column sums
of its elements are zero owing to (54). Hence, Msymm

1-target
is positive semidefinite (Berman and Plemmons, 1979).
As a consequence 𝜖1-target

 = UTMsymm
1-targetU ≥ 0, which is the

desired result. ◽
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In the 1-target case,  schemes have all the proper-
ties one can possibly desire. Note that the last proposition is
not in contradiction with Godunov’s theorem, since the LED
property would require the positivity of the coefficients in
all the elements of the mesh, which obviously (and unfortu-
nately) are not all 1-target. Similarly,  schemes must have
bounded coefficients in all E ∈ h. Only one (or none) of the
two properties can be retained in the 2-target case by a linear
 scheme. Two examples are recalled in the following.

4.3.1 Multidimensional upwind schemes: the LDA
scheme

The LDA is the linear - scheme defined by the
distribution coefficients:

𝛽LDA
i = k+i N = k+i

(∑
j∈E

k+j

)−1

∈ [0, 1] (81)

In the homogeneous case, (79) gives for the local nodal
residuals

𝜙LDA
i = 𝛽LDA

i 𝜙E = k+i (uout − uin) (82)

The scheme is clearly  , since 𝛽LDA
i is bounded indepen-

dently on 𝜙E, and hence 𝜙i = (h3). One easily checks that
it is not LED (Paillère, 1995). In the 2-target case, a simple
geometrical interpretation is possible (Paillère, 1995; Roe,
1987). With reference to Figure 5, we define the subtriangles
T423 and T143. Simple trigonometry shows that

|T423| = l34k1||a⃗|| , |T143| = l34k2||a⃗||
and |E| = |T423| + |T143| = l34(k1 + k2)||a⃗||

1

2

T423

T143

I34

3 ≡ in

4 ≡ out

a
→

Figure 5. Geometry of  schemes. LDA in the two-target case.

The distribution coefficients of the two downstream nodes 1
and 2 can be written as the area ratios

𝛽LDA
1 =

k1

k1 + k2
=

|T423||E| , 𝛽LDA
2 =

k2

k1 + k2
=

|T143||E|
4.3.1.1 LDA scheme: energy stability
Using the definition of 𝜙LDA

i , and equations (52) and (79),
the energy balance of the LDA scheme is

dLDA
h

dt
= −

∑
E∈h

∑
j∈E

uj𝜙
LDA
j = −

∑
E∈h

uout M (uout − uin)

Simple manipulations lead to the more convenient expression

dLDA
h

dt
= −

∑
E∈h

(uout + uin)
2

M (uout − uin) − 𝜖LDA
h (83)

with

𝜖LDA
h = 1

2

∑
E∈h

(uout − uin) M (uout − uin) ≥ 0 (84)

As for the PG scheme, the energy production of the LDA
can be split into a stabilizing term, owing to the upwinding,
plus a centered term. In this case, both contributions act along
the streamline, making the analysis less clear. Indeed, we
can express the energy balance of the LDA scheme as (see
equation (47))

dLDA
h

dt
= −

∑
E∈h

M ((uout) − (uin)) − 𝜖LDA
h , 𝜖LDA

h ≥ 0

(85)
the first term representing the approximation of the net
energy flux through the whole spatial domain. Estimate (85)
proves the dissipative character of the scheme. However,
in this case it is not clear how to simplify the first terms
by means of the BCs, to obtain eventually a full proof of
stability.

4.3.2 Multidimensional upwind schemes: the N
scheme

The N scheme is perhaps the most successful first-order
scheme for the solution of the advection equation. First
proposed by Roe in the 1980s (Roe, 1987), it has been since
then the basis for the construction of nonlinear positive and
 schemes. Thanks to its  character, it has the lowest
numerical dissipation among first-order schemes (Paillère,
1995). It is defined by the following local nodal residuals:

𝜙N
i = k+i (ui − uin) (86)
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1

2

out

3 ≡ in

a1
→

a2
→

a
→

Figure 6. Geometry of  schemes. N scheme in the
two-target case.

Being  , the N scheme differs from the LDA only in the
2-target case, in which a simple geometrical representation
exists. In particular, we introduce the vectors a⃗1 and a⃗2,
parallel to the edges 31 and 32 respectively, such that a⃗1 +
a⃗2 = a⃗ (see Figure 6). Simple algebra shows that

𝜙E(a⃗) = ∫E
a⃗ ⋅ ∇uh dx dy

= 𝜙E(a⃗1) + 𝜙E(a⃗2) = k1(u1 − u3) + k2(u2 − u3)

which immediately gives for the N scheme

𝜙N
1 = k1(u1 − u3) = 𝜙E(a⃗1)

𝜙N
2 = k2(u2 − u3) = 𝜙E(a⃗2)

In the 2-target case, the scheme reduces to first-order
upwinding along the edges, with properly defined advection
speeds.

4.3.2.1 N scheme: positivity and energy stability
To check that it verifies the local LED condition, we rewrite
the N scheme as

𝜙N
i = k+i ui +

∑
j∈E

k+i Nk−j uj

= −
∑
j∈E
j≠i

k+i Nk−j (ui − uj) =
∑
j∈E
j≠i

cij(ui − uj)

Since cE
ij = −k+i Nk−j ≥ 0, the N scheme verifies Propositions

4, 5, and 6, and Theorem Proposition 4, and the related
stability bounds. The time-step restrictions for its positivity

and local positivity read

Δt ≤ |Si|
(1 − 𝜃)

∑
E∈i

k+i
, ∀i ∈ h

and

Δt ≤ |E|
3(1 − 𝜃)k+i

, ∀E ∈ i, ∀i ∈ h (87)

with 𝜃 ∈ [0, 1). These constraints can be shown to be larger
than the corresponding ones of the upwind - and Rv
scheme (Paillère, 1995). In addition to this, we note that∑

j∈E
j≠i

(cij − cji) = −
∑
j∈E
j≠i

(k+i Nk−j − k+j Nk−i )

= −
∑
j∈E

(k+i Nk−j − k+j Nk−i ) = k+i + k−i = ki

which, as for the upwind - scheme, cancels identi-
cally when summed over the elements of i, in the case of
constant advection. As a consequence, the scheme respects
the energy stability criteria of Propositions 7 and 8. In partic-
ular, the energy evolution of the scheme can be easily shown
to be given by

dN
h

dt
= −1

2∮𝜕Ωha⃗ ⋅ n̂ dl −
∑
E∈h

∑
i∈E

∑
j∈E

uiM̄
N
ij uj

where the boundary integral can be handled as done for
the SUPG scheme, and M̄N is the (positive semidefinite)
matrix energy operator (Abgrall and Barth, 2002; Barth,
1996; Abgrall and Mezine, 2003b)

M̄N = 1
2

⎡⎢⎢⎣
k1
k2
k3

⎤⎥⎥⎦N
⎡⎢⎢⎣
k1
k2
k3

⎤⎥⎥⎦
T

+ 1
2

⎡⎢⎢⎣
k+1 0 0
0 k+2 0
0 0 k+3

⎤⎥⎥⎦
−1

2

⎡⎢⎢⎣
k+1
k+2
k+3

⎤⎥⎥⎦N
⎡⎢⎢⎣
k+1
k+2
k+3

⎤⎥⎥⎦
T

+ 1
2

⎡⎢⎢⎣
−k−1 0 0

0 −k−2 0
0 0 −k−3

⎤⎥⎥⎦
−1

2

⎡⎢⎢⎣
−k−1
−k−2
−k−3

⎤⎥⎥⎦N
⎡⎢⎢⎣
−k−1
−k−2
−k−3

⎤⎥⎥⎦
T

(88)

4.3.3 Relations between the N and LDA schemes:
dissipation, nonhomogeneous problems

Here, we elaborate on the relations between the N and the
LDA schemes. We show that the N scheme can be written
as the LDA scheme plus an anisotropic dissipation term.
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We start with the following observation. The definition of
the inflow state (78) is such that, for the N scheme, in the
homogeneous case one has automatically

𝜙E =
∑
j∈E

𝜙N
j

We can reverse things and, given𝜙E, compute a state u∗in from
the satisfaction of the consistency constraint (13):

∑
j∈E

k+j (uj − u∗in) = 𝜙E =⇒ u∗in = N

(∑
j∈E

k+j uj − 𝜙E

)
(89)

Clearly, if𝜙E is given by (52) (with = 0), using the relation
kj = k+j + k−j , we get back u∗in = uin as in (78). However, we
can obtain additional information by using (89) in (86):

𝜙N
i = k+i (ui − u∗in) = k+i ui − k+i

uout

⏞⏞⏞⏞⏞⏞⏞∑
j∈E

Nk+j uj +

𝛽LDA
i 𝜙E

⏞⏞⏞

k+i N𝜙E

and finally

𝜙N
i = 𝜙LDA

i + dN
i , dN

i = k+i (ui − uout) (90)

Clearly, the term dN
i is such that the local LED condition is

verified, as shown in the previous section. Moreover∑
j∈E

dN
j = 0 (91)

We can say more about this term by examining its contri-
bution to the energy balance of the N scheme. Denoting
the nodes of the element by (1, 2, 3), we define the vector
dN = [dN

1 , d
N
2 , d

N
3 ]

T given by

dN = DNU

DN =
⎡⎢⎢⎣
k+1 0 0
0 k+2 0
0 0 k+3

⎤⎥⎥⎦ −
⎡⎢⎢⎣
k+1
k+2
k+3

⎤⎥⎥⎦N
⎡⎢⎢⎣
k+1
k+2
k+3

⎤⎥⎥⎦
T

(92)

with U = [u1, u2, u3]T. The matrix DN is symmetric, and it is
positive semidefinite, as shown by

𝜖N = UTDNU = (u1 − u2)k+1 Nk+2 (u1 − u2)

+ (u1 − u3)k+1 Nk+3 (u1 − u3)

+ (u2 − u3)k+2 Nk+3 (u2 − u3) ≥ 0 (93)

Clearly dN
i is a dissipation term. In particular, the N scheme

is more dissipative than the LDA scheme (Abgrall, 2001;

Abgrall and Mezine, 2003b):

dN
h

dt
=

dLDA
h

dt
−

∑
E∈h

𝜖N ≤ dLDA
h

dt
(94)

Relations (90) and (91) give a simple means of extending
the N scheme to more general situations. In particular, in the
nonhomogeneous case  = (x, y), we have (using (52) and
(90))

𝜙N
i = 𝛽LDA

i 𝜙E + dN
i = k+i (ui − uin) −

∑
j∈E

|E|
3
𝛽LDA

i j (95)

with uin as in (78). One can show that, if the source term is
independent of the solution, scheme (95) verifies a modified
discrete maximum principle (see Ricchiuto, 2005; Sidilkover
and Roe, 1995 for more details). Scheme (95) was initially
proposed in Sidilkover and Roe (1995).

4.4 Nonlinear  schemes

Nonlinear schemes are needed to combine linearity preser-
vation and LED. The interest in  discretizations is largely
due to the success of the nonlinear PSI scheme of Struijs et al.
(1991). For steady scalar advection, the PSI scheme has been
proved to perform better than standard second-order limited
 schemes, especially on irregular grids (Struijs et al.,
1991; Paillère, 1995; Roe and Sidilkover, 1992; Sidilkover
and Roe, 1995; Abgrall and Mezine, 2003b, 2004). Being
completely parameter free, it is an interesting alternative
to  schemes with shock-capturing terms (Paillère, 1995;
Carette et al., 1995). Unfortunately, when dealing with
inhomogeneous or time-dependent problems and systems,
the extension of the PSI scheme is unclear. This has led
to a large number of techniques to design nonlinear 
schemes, for which we refer to references given in the
introduction.

Here we consider two approaches: the local blending of a
linear  scheme with a linear LED one, and the nonlinear
limiting of a LED scheme into a  one. We mainly consider
discretizations that use as linear LED scheme the N scheme.

4.4.1 Blended schemes

Given a  scheme defined by the split residuals 𝜙
i , and

a linear LED first-order scheme, defined by the local nodal
residuals 𝜙LED

i , a blended scheme is defined by

𝜙i = (1 − Θ(uh))𝜙
i + Θ(uh)𝜙LED

i (96)

where Θ(uh) is a blending parameter, which must ensure that
𝜙i = (h3) in smooth regions, and that the LED character of
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the first-order scheme prevails across discontinuities. Even
though the idea is quite simple, the design of Θ is not
trivial at all. When blending the LDA and the N schemes,
the blending approach has an interesting interpretation. In
particular, using (90) we can write that

𝜙i = (1 − Θ(uh))𝜙LDA
i + Θ(uh)𝜙N

i = 𝜙LDA
i + Θ(uh)dN

i (97)

Blending the LDA and the N scheme is equivalent to adding
a nonlinear dissipation term to the LDA scheme. Defining
Θ in a very rigorous way might not be extremely important
in practice, as shown by the fact that the heuristic definition
of the blending parameter of Sermeus and Deconinck (2005)
and Deconinck et al. (2000).

Θ(uh) =
|𝜙E|∑

j∈E
|𝜙N

j | ∈ [0, 1] (98)

has given good results in several applications (Sermeus and
Deconinck, 2005; Henriques and Gato, 2004; Abgrall and
Mezine, 2003b; Csík et al., 2001; Csík et al., 2003b). A
rigorous study of this problem is found in Abgrall (2001) and
Abgrall and Mezine (2003b). In the reference it is also shown
that the PSI scheme of Struijs can be rewritten as a blended
LDA/N scheme, for a particular choice of Θ(uh).

4.4.2 Limited nonlinear schemes

Several generalizations of the PSI scheme of Struijs exist
(see e.g. Paillère, 1995 for a discussion). The most general
formulation is obtained by introducing the framework of
the so-called limited schemes (Paillère, 1995; Abgrall and
Mezine, 2003b; Abgrall and Mezine, 2004; Abgrall and
Roe, 2003). Consider a first-order linear  scheme, with
split residuals 𝜙LED

i , verifying the subelement LED condi-
tion. Suppose that we have a continuous nonlinear mapping
𝜙(x0, x1, x2, x3) ∶ ℝ4 → ℝ3 such that

𝜑(x0, x1, x2, x3) = (x0 y1, x0 y2, x0 y3) (99)

with

xj = 0 =⇒ yj = 0 ∀j = 1, 2, 3 (100)

xj ⋅ (x0yj) ≥ 0 ∀j = 1, 2, 3 (101)

|yj| <∞ ∀j = 1, 2, 3 (102)

y1 + y2 + y3 = 1 (103)

A limited  scheme is obtained as

(𝜙1, 𝜙2, 𝜙3) = 𝜑(𝜙E, 𝜙LED
1 , 𝜙LED

2 , 𝜙LED
3 ) (104)

The properties of such a scheme are determined by those
of the mapping. In particular, (103) guarantees that the
scheme verifies the consistency condition (13). Property
(102), together with (99), and with the continuity of the
mapping, guarantees that the scheme is  . Moreover,
conditions (100) and (101) guarantee that, if 𝜙E ≠ 0, then
if 𝜙LED

j = 0 also 𝜙j = 0, otherwise one has

𝜙j = x0yj =
x0yj

xj
xj = 𝛼jxj = 𝛼j𝜙

LED
j

with 𝛼j =
x0yj

xj
≥ 0

Hence the resulting scheme also verifies the subelement LED
condition. There are quite a number of constructions leading
to functions 𝜑 verifying (99)–(103). A review can be found
in Abgrall and Mezine (2003b), Abgrall and Mezine (2004),
and Abgrall and Roe (2003). In particular, starting from the
N scheme, one obtains the PSI scheme of Struijs with the
choice

𝜑(x0, x1, x2, x3)

= 1∑
j=1,3

(x0xj)+
((x0x1)+, (x0x2)+, (x0x3)+)x0 (105)

This formulation of the PSI scheme has been known since
long. However, only lately this more general framework
has emerged as a way of constructing nonlinear schemes
for time-dependent problems and systems (Paillère, 1995;
Abgrall and Mezine, 2004). We remark that (105) can be
rewritten in the simpler form

𝛽i =
max(0, 𝛽N

i )∑
j=1,3

max(0, 𝛽N
j )
, 𝛽N

j =
𝜙N

j

𝜙E
(106)

which is how the limited N (LN) scheme is normally
presented in literature (Paillère, 1995; Abgrall and Mezine,
2004; Abgrall and Roe, 2003). Compared to the blending
approach, the nonlinear mapping has the advantage of
requiring only the evaluation of the local nodal residuals
of the linear LED scheme. We recall once more that, for
steady advection, in Abgrall (2001) it has been shown that
the scheme obtained by applying (105) to the N scheme
can be written as a blended LDA/N scheme. Generally
speaking, often the limited schemes work quite well even
when blended schemes fail (Csík et al., 2002; Abgrall and
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Mezine, 2003b, 2004). Nevertheless, mapping (105), which
is the one commonly used in practice, is known since a
very long time and improved constructions still have to
appear. The study and the understanding of these nonlinear
mappings is one of the most important subjects of future
research. We mention, in this regard, the recent work of
Abgrall (2006) and Ricchiuto and Abgrall (2006) inves-
tigating the algebraic well-posedness of limited schemes.
The well-posedness of the construction has been studied in
Ricchiuto et al. (2005a), where the following simple result
has been proved.

Proposition 10. (Well-posedness of the mapping — suffi-
cient condition) Given a linear scheme satisfying the
subelement LED condition, defined by the split residuals
𝜙LED

j , a condition to construct a well-posed nonlinear
mapping satisfying properties (99)–(103) is that

𝜙E
∑
j∈E

𝜙LED
j > 0 (107)

Even though the last condition seems trivial, schemes
violating (107) have been considered in some works (see e.g.
Abgrall and Roe, 2003; Ricchiuto et al., 2005a; Ricchiuto,
2005 for a discussion).

4.4.2.1 Nonlinear schemes: energy stability
This is an ongoing research topic. Only some qualitative
arguments can be given. We only consider the blended
LDA/N scheme and the limited schemes. For the former,
using the result of the analysis of the LDA and N schemes,
the energy evolution equation can be easily shown to be

dh

dt
= −

∑
E∈h

(∑
j∈E

k+j

)
((uout) − (uin))

−𝜖LDA
h −

∑
E∈h

Θ(uh)𝜖N 𝜖LDA
h , 𝜖N,Θ(uh) ≥ 0 (108)

having used (85), and with 𝜖N given by (93). The last
expression clearly shows the dissipative character of the
blended LDA/N scheme, due to its  character. The
last expression also applies to the PSI scheme of Struijs
(LN scheme, obtained with (105)), which, for a particular
choice of Θ(uh), has been proved to reduce to a blended
LDA/N scheme in Abgrall (2001). So far,  seems
enough to guarantee good stability properties. Unfortunately,
similar stability properties cannot be shown for nonlinear
schemes obtained by applying, for example, mapping (105)
to non- schemes, such as the Rv or the -
schemes. Even in the case of the PSI scheme of Struijs, a
local analysis shows that in the 2-target cases local sources

of energy instability might appear (see Barth, 1996 and also
Ricchiuto, 2005), even though in practice the scheme is
perfectly stable, confirming the validity of (108). Conversely,
on several occasions these instabilities have been shown to
pollute the numerical results, when applying the limiting
technique to non- schemes. The symptoms of this lack
of stability are poor iterative and grid convergence (Abgrall
and Mezine, 2003b; Ricchiuto, 2005) (only first order, even
if the schemes are  by construction). We limit ourselves
to the observation that the limiting approach is built entirely
on stability considerations in the maximum (L∞) norm, and
it does not take into account in any way either the energy
(L2) norm, or the directional propagation of the informa-
tion typical of hyperbolic PDEs. In this respect, nonlinear
limited  schemes are substantially different from stabi-
lized Galerkin  schemes with nonlinear shock-capturing
(), which have by construction a dissipative character.
The energy stability of the resulting schemes is quite clear
(Barth, 1998). However, L∞ stability is only recovered indi-
rectly for nonlinear  schemes, thanks to the regularization
of the solution introduced by the additional nonlinear dissi-
pation (Szepessy, 1989). Conversely, nonlinear limited 
schemes are constructed by imposing their local positivity.
This guarantees the preservation of the local monotonicity
of the solution. However, a dissipative character can only
be achieved if the overall discretization maintains a marked
upwind character. The  nonlinear limiting and the 
nonlinear  are then two completely different approaches
to stabilize discontinuities. The first has a strong L∞ flavor,
while the second relies on a very strong L2 stabilization due to
dissipation. Again we refer to Abgrall (2006) and Ricchiuto
and Abgrall (2006) for a recent analysis of the problem. The
study of improved and more general constructions certainly
deserves more attention.

4.5 Nonlinear problems

We now discuss some issues related to the extension of 
schemes to the case of fully nonlinear conservation laws
such as (4). We mainly consider the issues of constructing
conservative and stable discretizations. As far as accuracy is
concerned, the analysis of Section 3.2 applies equally to the
nonlinear case.

4.5.1 Conservation

In this and in the next paragraph, we consider the homoge-
neous counterpart of (4), which reads

𝜕u
𝜕t

+ ∇ ⋅  (u) = 0 on Ω ⊂ ℝ2 (109)
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or, in quasi-linear form

𝜕u
𝜕t

+ a⃗(u) ⋅ ∇u = 0, a⃗(u) = 𝜕 (u)
𝜕u

(110)

The schemes presented in the previous section rely on
the use of the quasi-linear form (110). However, even for
smooth initial and boundary data, nonlinear problems evolve
discontinuous solutions across which the relevant form of
the problem is obtained by integrating (109) in space-time
(Serre, 1999; Evans, 1998), while (110) cannot be used
unless appropriate linearizations are introduced. As a moti-
vational example, consider (109) with the exponential flux

 (u) = (eu, u)

We take Ω = [ − 0.025, 1.2] × [0, 0.5] with BCs:

u(x, y = 0)

=
{

sin(2𝜋x) if 0 ≤ x ≤ 1
0 otherwise

, u(−0.025, y) = 0 (111)

On a fine unstructured discretization of Ω (h = 1/200),
we compute the steady solution of this problem with the
LN scheme obtained by blindly linearizing (110) on each
element and applying mapping (106) to the N scheme
(86), and with the same scheme but with a more accurate
mean-value linearization. In other words, on each element
we solve the linearized problem

𝜕u
𝜕t

+ ã ⋅ ∇u = 0

with ã given by

ã = 1
3

∑
j∈E

a⃗(uj)

for the first scheme (referred to as nonconservative limited N
scheme (LN-NC)), and with ã obtained evaluating

ã = 1|E|∫E
a⃗(uh) dx dy = 1|E|∫E

(euh , 1) dx dy (112)

with a four-points Gaussian formula for the second scheme
(referred to as conservative limited N scheme (LN-C)).
Contour plots of the solutions obtained with the two
schemes are reported on Figure 7. From the plots, we see
that, even if the boundary data are continuous, with piece-
wise continuous derivatives, the solution contains a shock
that develops at a finite and relatively small distance from
the lower boundary, where the smooth data are imposed.
At first sight, the two solutions look identical. However,
a closer examination shows some major differences in
the approximation of the discontinuity. This is shown in
Figure 8(a), where we have reported a line plot of the two
solutions at y = 0.5 (upper boundary), and in Figure 8(b)
a close-up view of the solution of the LN-NC scheme,
superimposing the direction of the shock, as computed by
the LN-C scheme.

The two schemes give a different prediction of angle and
position of the shock. An explanation of this fact is the
following. Suppose that the error made when approximating
(112) with four Gaussian points is small enough, in partic-
ular, that we can assume that for the LN-C scheme equation
(112) is integrated exactly and so ã is an exact mean-value
linearization. In this case, we have, using (52) and applying
Gauss’ theorem,

𝜙E =
∑
j∈E

k̃juj = ∫E
ã ⋅ ∇uh dx dy = ∫E

a(uh) ⋅ ∇uh dx dy

= ∫E
∇ ⋅  (uh) dx dy = ∮𝜕E

 (uh) ⋅ n̂ dl (113)

Hence, if the error made in the evaluation of (112) is
negligible, the LN-C scheme is consistent with the inte-
gral form of (109), thus giving a correct approximation of
the discontinuity. The same cannot be said for the LN-NC
scheme, for which the third equality in (113) is not true. This
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Figure 7. Nonlinear problem with exponential flux. Contour plot of the solution obtained with the LN-NC (a) and LN-C (b) schemes.
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Figure 8. Nonlinear problem with exponential flux: conservation error. (a) solution at y = 0.5 in vicinity of the shock. (b) close-up of the
shock, solution of the LN-NC with conservative shock angle superimposed.

shows that, in extending  schemes to nonlinear conser-
vation laws, care must be taken in ensuring that the element
residual is a consistent approximation of the flux balance
over the element, before the distribution step. This leads to
the following definition.

Definition 9. (Conservative  scheme) A  scheme
is conservative if there existe a continuous approximation of
the flux h such that

𝜙E = ∮𝜕E
h ⋅ n̂ dl (114)

In Abgrall et al. (2002), it is proved that under assumptions
of continuity of the split residuals and of the flux h, conser-
vative  schemes respect a LW theorem. Conservative
schemes guarantee a correct approximation of the integral
form of (109), hence yielding a correct prediction of steady
discontinuities. Unfortunately, we have arrived at a problem
of incompatibility between the use of the integral form of
equation (109), needed to guarantee the approximation of
the correct weak solution, and the use of the flux Jacobians,
needed in the definition of the kj parameters used in the distri-
bution of the residual. A discussion of this problem and two
alternative possible solutions can be found in Abgrall and
Barth (2002) and Csík et al. (2002), and is reviewed in the
following paragraphs.

4.5.2 Conservative : accurate quadrature of the
quasi-linear form

The analysis of our motivational example leads to the
approach used in Abgrall and Barth (2002) to construct 

schemes based on the use of the quasi-linear form (110), still
guaranteeing a correct approximation of weak discontinuous
solutions. The basic idea is contained in equation (113): if ã
is computed exactly, the schemes obtained in this way obey
Definition 9 with h =  (uh), and uh as in (9). However, the
derivation of such an exact mean-value linearization of the
flux Jacobian a⃗(u) can be difficult, and in the case of a system
even impossible. This was the motivation to introduce in
Abgrall and Barth (2002) an approximate mean-value
linearization obtained with the Gaussian integration

ā = |E| NQ∑
l=1

𝜔la⃗(u(xl, yl)), (xl, yl) ∈ E (115)

where 𝜔l is the quadrature weight corresponding to the lth
Gaussian point (xl, yl). This leads to

𝜙E =
∑
j∈E

k̄juj = ∫E
∇ ⋅  (uh) dx dy + RNQ

(116)

where RNQ
is the conservation error due to the approximate

integration of a⃗(uh). The properties of the Gaussian integra-
tion, namely the behavior of the quadrature error, allows the
authors of Abgrall and Barth (2002) to prove that

1. provided that the number of quadrature points NQ is large
enough, the conservation error due to the approximate
integration is strictly smaller than the discretization error
of the schemes;

2. LW theorem: provided that the number of quadrature
points NQ is large enough and under some continuity
assumptions on the split residuals 𝜑i,  schemes
based on the approximate Gaussian quadrature of the
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quasi-linear form of the problem converge to the correct
weak solutions.

This approach indeed represents a solution for the exten-
sion of  schemes to general nonlinear conservation laws.
It is mathematically sound, and it allows us to apply the
maximum discrete principle analysis of Section 3.3 also in
the nonlinear case. However, it has the drawback of requiring
the evaluation of the flux Jacobians in several quadrature
points, which becomes computationally demanding when
approximating solutions to systems, especially in the pres-
ence of strong discontinuities (see Abgrall and Barth, 2002
for more).

4.5.3 Contour integration of the fluxes and monotone
schemes

A simpler, yet very effective, alternative approach is
proposed in Csík et al. (2002). The first element of the
construction is the definition of the element residual. Given
a continuous approximation of the flux h, one computes 𝜙E

as

𝜙E = ∮𝜕E
h ⋅ n̂ dl =

3∑
lj=1

 lj ⋅ n⃗lj

with  lj =
NC∑
p=1

𝜔ph(xp, yp), (xp, yp) ∈ lj (117)

lj being the jth edge of E, n⃗lj
is its exterior normal, scaled by

its length, and 𝜔p is the weight of the pth quadrature point
on lj. As before, the computation of the residual is based
on a quadrature formula, but however, now Definition (117)
satisfies by construction (114). Hence, conservation is in this
case guaranteed by construction. However, we still need to
specify how the flux Jacobians can be used to distribute 𝜙E.
We will distinguish between the case of a  scheme and
the one of schemes that are positive when applied to a linear
problem.
 schemes The case of  schemes is quite simple.

These schemes are defined by

𝜙i = 𝛽i𝜙
E

with 𝛽 i uniformly bounded and respecting, by construction,
the consistency relation ∑

j∈E

𝛽j = 1

The dependence of the distribution coefficients on the kj

parameters does not alter any of these two properties (bound-
edness and consistency): we can use for the computation of

the 𝛽 i’s the parameters

kj =
a⃗(uE) ⋅ n⃗j

2
(118)

with uE an arbitrary average of uh over E.
Positive schemes The case of the positive schemes is more
difficult. This is easily seen for the N scheme, whose defi-
nition (equation (86)) is entirely based on the quasi-linear
form of the problem. As proposed in Csík et al. (2002), the
solution of this problem is difficult to put in a general frame-
work. We use instead the formulation proposed in Ricchiuto
(2005), where it has been underlined as to how the conser-
vative N scheme of Csík et al. (2002) is a particular case
of a class of positive  schemes, which can be written
as

𝜙i = 𝛽i𝜙
E + di = 𝛽i𝜙

E +
∑
j∈E

Dij(ui − uj), Dij ≥ 0 (119)

with bounded distribution coefficients 𝛽 i and dissipation
terms di respecting the consistency relations∑

j∈E

𝛽j = 1,
∑
j∈E

dj = 0

Owing to the last relations, independently of the lineariza-
tion used to evaluate 𝛽 i and di, conservative variants of
the positive schemes are obtained just by using in (119)
the residual computed according to (117). The cases of the
N scheme and of the Rv scheme are easily obtained from
equations (90) and (71), giving

𝜙N−C
i = 𝛽LDA

i 𝜙E + dN
i = 𝛽LDA

i 𝜙E +
∑
j∈E

k+i Nk+j (ui − uj)

(120)
for the N scheme (where C stands for conservative), and
giving for the Rv scheme

𝜙Rv−C
i = 1

3
𝜙E + dRv

i = 1
3
𝜙E + 1

3
𝛼
∑
j∈E
j≠i

(ui − uj) (121)

We refer the reader to Ricchiuto (2005) for a discussion on
the relations of this approach with other conservative formu-
lations proposed in literature. Relations with  schemes,
in particular with the 1D scheme of Huang (1981), are
discussed in Ricchiuto et al. (2003b). Note that conservative
positive schemes trivially verify condition (107), since for
𝜙E ≠ 0

𝜙E
∑
j∈E

𝜙j = (𝜙E)2 > 0

making the constructions of limited nonlinear  positive
schemes always well-posed.



Residual Distribution Schemes: Foundations and Analysis 27

4.5.4 Positive schemes for nonlinear problems

The fact that nonlinear problems admit discontinuous solu-
tions makes the need for schemes satisfying a discrete
maximum principle even greater. For  schemes,
we have to distinguish whether one makes use of the
approach of Abgrall and Barth (2002), based on the
Gaussian quadrature of the quasi-linear form, or of the
conservative formulation of Csík et al. (2002), based on
boundary integration of the fluxes. As already remarked,
in the first case the use of the quasi-linear form allows
to apply all the results of Section 3.3 to the nonlinear
case. We shall then focus on the second approach, for
which no results are available in the published literature,
with the exception of Ricchiuto (2005). Even though
the schemes of Csík et al. (2002) are based on the use
of the (nonlinear) fluxes for the definition of the local
residual, for the analysis one can anyway make use of the
quasi-linear form. In particular, we make the following
assumption.

Assumption 1. Given a Nc-points line quadrature formula
used to evaluate (117), it is possible to find a Nq-surface
quadrature rule to be used in (115), such that the equivalence

𝜙E =
3∑

lj=1

Nc∑
p=1

𝜔p (up,lj
) ⋅ n⃗lj

= |E| Nq∑
l=1

𝜔la⃗(ul) ⋅ ∇uh|E =
∑
j∈E

k̄juj (122)

holds up to the smallest between the quadrature error in
(117), and the one in (116).

In the following, we shall use the notation kj, to denote
the scalar upwind parameters based on the approximate
mean-value linearization, while using kj to denote the ones
based on any (also inexact) arbitrary linearization. Using the
general representation of a monotone  (119), we have to
then to analyze schemes of the form

𝜙i = 𝛽i

∑
j∈E

k̄juj +
∑
j∈E

Dij(ui − uj) (123)

where in general Dij is evaluated making use of the kj’s. Now
we can recast our prototype in the form (30), with

cii = 𝛽ik̄i +
∑
j∈E

Dij, cij = 𝛽ik̄j − Dij; Dij ≥ 0

This notation allows to prove two results, one positive and
the other (unfortunately) negative.

Proposition 11. (Rv-C (Rusanov scheme based on
Contour integration) scheme and subelement LED)
The Rv-C scheme (121) respects the subelement LED
condition, provided that 𝛼 in (121) is chosen big enough.

Proof. Trivially, for 𝛼 big enough 𝜙Rv−C
i =

∑
j∈E
j≠i

cij(ui − uj),

with cij =
1
3
(𝛼 − k̄j) ≥ 0. ◽

The last proposition makes the Rv-C scheme a very good
candidate to be used as a basis for the construction of a
positive limited nonlinear  scheme. Unfortunately, as
underlined in Section 4.4, the limited knowledge on the
(L2) stability of the limited schemes does not guarantee
that the resulting scheme would have the expected conver-
gence properties. Even though recent developments (see
Abgrall, 2006; Ricchiuto and Abgrall, 2006) would allow for
stable constructions based on centered low-order schemes,
the basic available technology works best with schemes
with a pronounced upwind character, such as the N scheme
for which, unfortunately, we have the following negative
result.

Proposition 12. (N-C (Narrow scheme based on Contour
integration) scheme and subelement LED) The N-C
scheme (120) cannot be proven to respect the subelement
LED condition. In particular, the scheme is prone to the
violation of this condition in multiple-target elements.

Proof. We start by writing (123) for the N-C scheme:

𝜙N-C
i = k+i N

∑
j∈E

k̄juj +
∑
j∈E
j≠i

k+i Nk+j (ui − uj)

Since the k̄js sum up to zero over an element (see (54)), one
can show that

𝜙N-C
i =

∑
j∈E
j≠i

k+i Nk̄j(uj − ui) +
∑
j∈E
j≠i

k+i Nk+j (ui − uj)

=
∑
j∈E
j≠i

k+i N(k+j − k̄+j )(ui − uj) −
∑
j∈E
j≠i

k+i Nk̄−j (ui − uj)

If kj = k̄j, as in the linear case or when using the formulation
of Abgrall and Barth (2002), the scheme reduces to its stan-
dard expression, with cij = −k̄+i N̄k̄−j ≥ 0, proving the local
LED condition in the nonlinear case. In general, however

cij = k+i N(k+j − k̄+j ) − k+i Nk̄−j , −k+i Nk̄−j ≥ 0
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Since the sign of the first term on the right-hand side is
unknown, we cannot prove the subelement LED condition.
Consider now the multiple-target situation in which ki, k̄i,
k̄j > 0 for some j ≠ i:

cij = k+i N(k+j − k̄+j )

where the beneficial effect of the second term has disap-
peared. The sign of cij could be either positive or negative,
depending on the local structure of the solution and the
average used for the evaluation of kj. Hence, the scheme is
particularly prone to the violation of the local LED condition
in multiple-target elements. ◽

This result seems to spoil the hopes of constructing a
nonoscillatory second-order nonlinear scheme, based on the
use of the N-C scheme. On two-dimensional triangular grids
the non-LED character of the N-C scheme could be limited
to two-target elements, but in three dimensions things could
get worse, owing to the presence of a larger number of
two-target tetrahedra and of three-target ones. In practice,
these effects have never been observed in any numerical
result, in two and three space dimensions, for scalar prob-
lems and for systems (Csík et al., 2002; Ricchiuto et al.,
2005a; Ricchiuto, 2005; Ricchiuto et al., 2007a). Exten-
sions of the N-C scheme to meshes composed of quadri-
laterals (Quintino et al., 2002; De Palma et al., 2006;
Abgrall and Marpeau, 2007) have also been proven to
yield nonoscillatory numerical solutions. We believe that
the monotone resolution of discontinuities observed in prac-
tice is due partly to a compensation of the violation of
the local LED condition when assembling the contributions
of all the elements, and partly to the dissipative character
of the scheme, which might be enough to dissipate weak
new local extrema, eventually appearing in the numerical
solution.

4.5.5 A note on stability: conservative 
and entropy

In the nonlinear case, the L2 norm (energy) stability anal-
ysis is replaced by a better suited tool: the entropy stability
analysis. The study of the stability of  schemes in
the so-called entropy norm is formally very difficult. Very
few results are available in the published literature (see
Abgrall and Mezine, 2003b for a review). For this reason
this subject is left out of the paper. The reader is referred
to Abgrall and Barth (2001, 2002), Abgrall and Mezine
(2003b) and Ricchiuto (2005) and references therein for
further information.

5 EXTENSION TO TIME-DEPENDENT
PROBLEMS

5.1 Preliminaries

This section considers the extension of  schemes to
the approximation of solutions to (4) in the time-dependent
case. Common experience is that the prototype scheme of
Definition 1 yields in practice first order of accuracy in
unsteady computations, whatever be the distribution strategy
adopted (Struijs, 1994; Maerz and Degrez, 1996; Ferrante
and Deconinck, 1997). There is perhaps only one exception
to this, represented by a LW discretization, which we shall
discuss later.

In general, however, it seems that achieving second (or
higher) order of accuracy in time-dependent computations
requires the time derivative to be consistently introduced in
the element residual. A heuristic explanation can be obtained
as follows. First, redefine the source term as

̃(u, x, y, t) = −𝜕u
𝜕t

+ (u, x, y, t)
Then, repeat the analysis of Section 3.2 for the (pseudo-)
steady problem

∇ ⋅  (u) = ̃(u, x, y, t)
Proceeding exactly as in Section 3.2, we can write down the
truncation error due to the spatial approximation

TE(wh) = ∫Ω
𝜑h

(
−̃h(wh, x, y, t) + ∇ ⋅ h(wh)

)
dx dy

+ 1
K

∑
E∈h

∑
i∈E

∑
j∈E

(𝜑i − 𝜑j)(𝜙E
i (wh) − 𝜙G

i (wh)

= ∫Ω
𝜑h

(
𝜕wh

𝜕t
+ ∇ ⋅ h(wh) − h(wh, x, y, t)

)
dx dy

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I

+ΔTE(wh)
⏟⏞⏟⏞⏟

II

(124)

for a given smooth exact solution of the time-dependent
problem w, and C1-class function 𝜙 with compact support.
We recall that in equation (124) the term I is associated to
the error introduced by the choice of the discrete polynomial
approximation of the unknown, the flux, and the source
term, while the second term represents the additional error
introduced by the  discretization.

From (124), the analysis proceeds exactly as in Section 3.2.
In particular, kth order schemes must verify (25), and 
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schemes (cf. Definition 3) are formally high order. More
importantly, following the analysis of source term discretiza-
tions at the end of Section 3.2, we conclude that, since
pointwise discretizations of the source term ̃ are generally
first-order accurate in space, the prototype  scheme of
Definition 1 will be in general only first order during the
transient. This is true no matter what the approximation of
the time derivative is, since the lack of accuracy is due to
an inconsistency in the spatial discretization. Concerning the
technical details of the analysis, no major differences are
present with respect to what we have seen in Section 3.2.
The reader is referred to Ricchiuto, Abgrall and Deconinck
(2007a) and Rossiello et al. (2007a) for a detailed study, also
including the influence of the choice of the discretization of
the time derivative.

In order to contruct higher-order schemes for
time-dependent problems, in the following section we
introduce a more general prototype. Even though this can be
done in a very general fashion, for simplicity we focus on a
particular case of second-order discretizations. Additional
references are given in the text, allowing the reader to have
a wider overview on the subject.

5.2 A more general prototype

We assume to be given the set of nodal values of u at
time tn, {un

i }i∈h
. Next, we note that in the space-time slab

Ω × [tn, tn+1], each element E in the mesh defines a prism in
space-time, defined as (see Figure 9)

Pn+1∕2
E ∶= E × [tn, tn+1] (125)

By abuse of notation, we shall say that Pn+1∕2
E ∈ i if E ∈ i.

In addition, we denote by un and un+1 the piecewise linear
discrete approximations (cf. equation (9))

un =
∑
i∈h

𝜓i(x, y)un
i , un+1 =

∑
i∈h

𝜓i(x, y)un+1
i

with {𝜓i}i∈h
being the piecewise linear finite-element basis

functions verifying (11). With this notation, we give the
following characterization in the scalar case.

Definition 10. (Space-time ) A space-time  or
space-time  scheme is defined as one that, given un, the
discrete approximation in space of u at time tn, and given
a continuous discrete representation in space and time of
the unknown u, denoted by uh, and of the flux and of the
source term, h and h respectively, computes the unknowns
{un+1

i }i∈h
as follows:

1

1

2

E

E

2

3

3

tn

tn+1

Figure 9. Space-time prism Pn+1∕2
E = E × [tn, tn+1].

1. ∀E ∈ h compute the space-time residual

ΦPn+1∕2
E = ∫Pn+1∕2

E

(
𝜕uh

𝜕t
+ ∇ ⋅ h − h

)
dx dy dt

= ∫E ∫
tn+1

tn

(
𝜕uh

𝜕t
+ ∇ ⋅ h − h

)
dx dy dt

(126)

2. ∀E ∈ h distribute fractions of ΦPn+1∕2
E to the nodes of

E. Denoting by ΦPn+1∕2
E

i the split residual or local nodal
residual for node i ∈ E, one must have by construction∑

j∈E

ΦPn+1∕2
E

j = ΦPn+1∕2
E

= ∫Pn+1∕2
E

(
𝜕uh

𝜕t
+ ∇ ⋅ h − h

)
dx dy dt (127)

Equivalently, denoting by 𝛽
Pn+1∕2

E

i the distribution coeffi-
cient of node i:

𝛽
Pn+1∕2

E

i =
ΦPn+1∕2

E

i

ΦPn+1∕2
E

(128)

one must have by construction∑
j∈E

𝛽
Pn+1∕2

E

j = 1 (129)

3. ∀i ∈ h assemble the elemental contributions of all
Pn+1∕2

E ∈ i and compute the nodal values of un+1 by
solving the algebraic system∑

Pn+1∕2
E ∈i

ΦPn+1∕2
E

i = 0, ∀i ∈ h (130)
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Before proceeding with the analysis of this new prototype,
let us give a few remarks. First of all, the above definition
introduces a continuous approximation of the unknown (and
of flux and source term) in space and time. As announced,
this section only considers second-order discretizations, in
which case it is assumed that uh has the following particular
form:

uh = t − tn

Δt
un+1 + tn+1 − t

Δt
un (131)

Note that in the slabΩ× [tn, tn+1], uh can be recast as a contin-
uous space-time bilinear interpolant of the data {uk

i }
k=n,n+1
i∈h

,
with basis

Ln
i = tn+1 − t

Δt
𝜓i , Ln+1

i = t − tn

Δt
𝜓i (132)

Concerning h and h, we will shortly see that, as in the
steady case, their choice can be made on the basis of accuracy
considerations.

As a second remark, note that the algorithm defined by
steps 1–3 constitutes a time-marching procedure, the nodal
values at time tn being considered as given data. A more
subtle way to see this is that on a space-time prism no residual
is distributed to nodes at the past level. We shall discuss
this issue in some more detail when introducing the concept
of space-time upwinding. Until then, we shall simplify the
notation by dropping the superscript n + 1/2, referring to the
prism E × [tn, tn+1] simply as PE. Hence, element residual,
local nodal residual, and distribution coefficients will be
denoted by ΦPE , ΦPE

i , and 𝛽PE

i respectively.
Finally, we underline that more general variants of the

class of schemes of Definition 10 exist. Perhaps the most
important aspect to highlight is that several different ways of
approximating the time derivative can be thought of. Since
such a general characterization is out of the scope of this
paper, we limit ourselves to the comment that, other than
approximations obtained via continuous discrete functional
representations in space-time, one can resort to the appli-
cation of a finite difference formula in time to obtain a
semidiscrete equivalent of the continuous problem, to be fed
into (126) for the computation of the residual. This allows
somehow to decouple the approximation of the temporal
derivative from the spatial ones (see e.g. the representation
used in Ricchiuto et al., 2007a). In addition to this, the inte-
gral in time in (126) is not strictly necessary. In particular,
one can think of schemes obtained by first discretizing the
time derivative, and then distributing a residual defined as the
spatial integral of the semidiscrete operator obtained in this
way. The first second (and higher) order  schemes were
actually constructed in this way (Ferrante and Deconinck,
1997; Maerz and Degrez, 1996; Caraeni, 2000). More recent
examples can be found in Abgrall et al. (2005), Caraeni and

Fuchs (2005), De Palma et al. (2005), and Rossiello et al.
(2007). The approach considered here is instead more closely
related to the truly space-time formulation of Abgrall and
Mezine (2003a), Csík and Deconinck (2002), and Csík et al.
(2003a).

In the following sections, we review some of the basic
properties of the schemes characterized by Definition 10 and
give some examples.

5.2.1 Accuracy

This section considers the characterization of the accuracy
of the prototype of Definition 10. In the analysis which
follows, we make explicit use of the regularity hypothesis
on time step and mesh size (second in (8)), so that we have
Δt = (h) and vice versa. The following can be shown (the
reader is referred to Rossiello et al. (2007) and Ricchiuto
et al. (2007a), and to Caraeni and Fuchs (2005), Abgrall and
Mezine (2003a), and De Palma et al. (2005) and references
therein).

Proposition 13. (Space-time : second order of accu-
racy) Given any smooth function 𝜑 ∈ C1(Ω × [0, tf]), with
𝜑(⋅, t) having compact support on Ω. Given a discretization
of the spatial and temporal domain satisfying (8). Given uh,
h, and h, continuous, second-order accurate space-time
interpolants of a smooth exact solution to (4), and of the
corresponding exact flux  (u) and source term (u, x, y, t).
Then, a space-time  verifies the truncation error estimate

TE(uh, tf ) ∶=
N∑

n=0

∑
i∈h

𝜑n+1
i

∑
PE∈i

ΦPE

i (uh) = (h2) (133)

provided that the following condition is met

ΦPE

i = (h4) (134)

Note that, even though apparently different, the last condi-
tion is consistent with the condition for second order of
accuracy at steady state (𝜙E

i (uh) = (h3) (cf. equation (25)).
The extra order of magnitude in (134) is due to the extra
integral in time used for the definition of the element resid-
uals, which brings an extra (Δt) = (h) into the anal-
ysis (see Rossiello et al., 2007; Ricchiuto et al., 2007a for
details).

Proposition 4.2 gives a criterion to choose the discrete
approximations (polynomial interpolant) of the flux and of
the source term. Indeed, condition (134) is valid provided
that h and h are second-order accurate. For a given
smooth solution u, an obvious choice is to take h =  (uh)
and h = (uh, x, y, t). However, we note that the bilinear
polynomials
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h =
t − tn

Δt
n+1 + tn+1 − t

Δt
n

and h =
t − tn

Δt
n+1 + tn+1 − t

Δt
n

withn+1,n,n+1, andn linear in space (cf. equations (9),
(11), and (131)), also satisfy this requirement. In this partic-
ular case, the element residual can be explicitly computed as
follows:

ΦPE =
∑
j∈E

|E|
3

(un+1
j − un

j ) +
Δt
2

∑
j∈E

n+1
j + n

j

2
⋅ n⃗j

−Δt
2

∑
j∈E

|E|
3

(n+1
j + n

j ) (135)

In particular, simple arguments can be used to show that,
given a smooth exact solution u, for any second-order accu-
rate variable, flux, and source term approximations in space
and time, one has (Rossiello et al., 2007; Ricchiuto et al.,
2007a)

ΦPE (uh) = (h4)

Hence, as in the steady case, the following characterization
is possible.

Definition 11. ( space-time  schemes) A
space-time  scheme for which ΦPE

i = 𝛽
PE

i ΦPE , with

𝛽
PE

i uniformly bounded, that is

max
E∈h

max
j∈E

||𝛽PE

j || < C < ∞ ∀ ΦPE , uh, u
0
h, h, 𝛿tn, …

is said to be (). For any given second-order approxima-
tion of the variable, the flux, and the source term, a 
scheme verifies by construction the truncation error estimate
(133).

Space-time schemes can also be abstractly represented
by introducing the following discrete prototype:

∑
E∈i

(∑
j∈E

mE
ij (u

n+1
j − un

j ) + 𝜙i

)
= 0 ∀i ∈ h (136)

where 𝜙i represents any splitting of the spatial part of the
residual

∑
j∈E

𝜙j = ∫
tn+1

tn ∫E

(
∇ ⋅ h − h

)
dx dy dt

and with mE
ij a mass matrix respecting the consistency

constraints:

∑
i∈E

𝛽M
i = 1 with 𝛽M

i = 1|E| ∑
j∈E

mE
ij (137)

where the superscript M stands for mass matrix. This
representation shows another feature in common with
finite-element methods: a consistent discretization in space,
naturally leads to the appearance of a mass matrix multi-
plying the time derivative. The first examples of second- and
third-order schemes of this type are due to the independent
work of Caraeni (2000), Caraeni and Fuchs (2002, 2005),
Maerz and Degrez (1996), and Ferrante and Deconinck
(1997).

Concerning the form of the mass matrix, a very interesting
analysis, based on geometrical arguments, can be found in
De Palma et al. (2005). For  schemes, one can show the
following particularly simple form:

mE
ij =

|E|
3

⎡⎢⎢⎢⎣
𝛽

PE

1 𝛽
PE

1 𝛽
PE

1

𝛽
PE

2 𝛽
PE

2 𝛽
PE

2

𝛽
PE

3 𝛽
PE

3 𝛽
PE

3

⎤⎥⎥⎥⎦
having denoted the nodes of E by {1, 2, 3}. In particular,
in this case 𝛽M

i = 𝛽
PE

i . Other examples of mass matrices are
given hereafter.

5.2.2 Examples of mass matrices: finite-element
schemes

A well-known member of the class of schemes defined by
(136) is the Galerkin  scheme. In the space-time slab
Ω × [tn, tn+1], it is defined by

∫
tn+1

tn ∫Ω
𝜓i

𝜕uh

𝜕t
dx dy dt

+∫
tn+1

tn ∫Ω
𝜓i

(
∇ ⋅ h − h

)
dx dy dt = 0, ∀i ∈ h

(138)
If 𝜓 i denotes the continuous piecewise linear shape function,
we end up with a scheme formally identical to (136) with the
Galerkin mass matrix given by

mE
ij = mG

ij =
|E|
12

⎡⎢⎢⎣
2 1 1
1 2 1
1 1 2

⎤⎥⎥⎦
Note that, strictly speaking, this is not a truly space-time
Galerkin scheme, the test function being the standard linear
shape function in space, and not the space-time bilinear
polynomials (132), used to contruct (131).
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The streamline dissipation Galerkin scheme with stabiliza-
tion parameter  can be derived in a similar fashion:

∫
tn+1

tn ∫Ω
𝜓i

𝜕uh

𝜕t
dx dy dt

+∫
tn+1

tn ∫Ω
𝜓i

(
∇ ⋅ h − h

)
dx dy dt

+
∑
E∈h

∫
tn+1

tn ∫E
𝜏 ã ⋅ ∇𝜓i

𝜕uh

𝜕t
dx dy dt

+
∑
E∈h

∫
tn+1

tn ∫E
𝜏 ã ⋅ ∇𝜓i

(
∇ ⋅ h − h

)
dx dy dt = 0

(139)
with ã being a properly chosen average of the flux Jacobian
(cf. equation (115)). As before, we obtain a scheme formally
identical to (136) with

mSD-G
ij = 1

12

⎡⎢⎢⎣
2|E| + 2𝜏 k1 |E| + 2𝜏 k1 |E| + 2𝜏 k1|E| + 2𝜏 k2 2|E| + 2𝜏 k2 |E| + 2𝜏 k2|E| + 2𝜏 k3 |E| + 2𝜏 k3 2|E| + 2𝜏 k3

⎤⎥⎥⎦
We observe that both for the Galerkin scheme and for the
SD-G scheme, formulation (31) is obtained by substituting
to the mass matrix of the schemes, the lumped mass matrix
obtained as

mlumped
ij = 𝛿ij

∑
k∈E

mE
ik = 𝛿ij

|E|
3

The mass lumping procedure introduces an inconsistency,
ultimately spoiling the spatial accuracy of the schemes.

5.2.3 Examples of mass matrices: a 
Taylor–Galerkin procedure and the
second-order LW scheme

For the case of the advection equation (5) with zero source
term, we show the construction of a consistent second-order
cell-vertex  LW scheme. We start with the Taylor expan-
sion in time (Paillère, 1995; Roe, 1987):

un+1 = un +
(𝜕u
𝜕t

)n

Δt + Δt2

2

(
𝜕2u
𝜕t2

)n

+ (Δt3)

For linear homogeneous scalar advection, one has

𝜕u
𝜕t

= −∇ ⋅ (a⃗ u) and
𝜕2u
𝜕t2

= ∇ ⋅
(
a⃗∇ ⋅ (a⃗ u)

)
hence

un+1 − un

Δt
+ ∇ ⋅ (a⃗ u)n − Δt

2
∇ ⋅

(
a⃗∇ ⋅ (a⃗ u)

)n = (Δt2)

2
ni
→

nij
→

nik
→

i

k

j

Si ∩ E

∂Si ∩ E

Figure 10. LW scheme: geometry of the construction.

which is a semidiscrete second-order accurate equivalent of
the time-dependent advection equation. Neglecting terms
of  ≥ Δt2 and discretizing the resulting expression with
Galerkin  leads to the well-known Taylor–Galerkin
scheme (Donea and Huerta, 2003). The  analog is
usually obtained by integrating the last expression over the
median dual cell Si:

∫Si

un+1 − un

Δt
dx dy + ∫Si

∇ ⋅ (a⃗ u)n dx dy

−Δt
2 ∫Si

∇ ⋅
(
a⃗∇ ⋅ (a⃗ u)

)n
dx dy = 0

which we recast as

∑
E∈i

(
∫Si∩E

un+1 − un

Δt
dx dy + ∫Si∩E

∇ ⋅ (a⃗ u)n dx dy

−Δt
2 ∮𝜕Si∩E

∇ ⋅ (a⃗ u)na⃗ ⋅ n̂ dl

)
= 0 (140)

One easily checks that for uh given by (9), and due to the
definition of Si (see also Figure 10),

∫Si∩E
∇ ⋅ (a⃗ u)n dx dy = 1

3
𝜙E(un)

Δt
2 ∮𝜕Si∩E

∇ ⋅ (a⃗ u)na⃗ ⋅ n̂ dl = −
Δt ki

2|E| 𝜙E(un)

with 𝜙E(un) as in (52) (with  = 0). Integrating the first
term in (140) exactly with respect to a piecewise linear
approximation of un+1 and un of the type (9), we arrive at
the LW scheme

∑
E∈i

(∑
j∈E

mLW
ij (un+1

j − un
j ) + Δt𝛽LW

i 𝜙E(un)

)
= 0, ∀i ∈ h
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𝛽LW
i = 1

3
+

Δt ki

2|E| (141)

where the consistent  LW mass matrix mLW
ij is given by

mLW
ij = |E|

108

⎡⎢⎢⎣
22 7 7
7 22 7
7 7 22

⎤⎥⎥⎦ (142)

Scheme (141) is fully consistent with a second-order approx-
imation of the solution in space and, not surprisingly, features
a nondiagonal mass matrix. The LW scheme traditionally
encountered in literature (Paillère, 1995; Roe, 1987; Hubbard
and Roe, 2000; De Palma et al., 2001) is obtained from this
consistent discretization after lumping of mLW

ij , yielding

un+1
i = un

i −
Δt|Si| ∑

E∈i

𝛽LW
i 𝜙E(un), ∀i ∈ h (143)

As in the case of the Galerkin and SD-G schemes, one
would expect the lumping of the mass matrix to lead
to a first-order discretization. Surprisingly, this incon-
sistency has never been observed in practice, scheme
(143) having had some success in literature (Hubbard
and Roe, 2000; De Palma et al., 2001, 2005). With the
exception of the recent results reported in De Palma et al.
(2005), we remark however that most of the numerical tests
presented in the references were performed on regular grids,
on which error cancellation might occur. For triangular
grids obtained by cutting a Cartesian grid with uniformly
right-running diagonals, this has been shown in Ricchiuto
and Deconinck (1999), where the modified equation of
scheme (143) has been derived, showing second order of
accuracy.

The results presented in De Palma et al. (2005) on unstruc-
tured grids seem to fall out of the last remarks. An expla-
nation of these results might be obtained by adapting to the
time-dependent case the observations done for the treatment
of source terms in Section 5.2.1. However, at the moment, no
formal evidence has been given to show that the inconsistent
LW scheme (143) is second-order accurate.

5.2.4 Monotonicity

The schemes of Definition 10 are inherently implicit. Their
monotonicity will generally depend on the form of the
mass matrix. Generally speaking, the idea is that if the
spatial part of (136) defines a LED scheme and if the mass
matrix is an -matrix (Berman and Plemmons, 1979),
then, upon its inversion, one would end up with a scheme
that is still LED, hence respecting a discrete maximum
principle.

For the particular case of Definition 10, with uh taken as
in (131), one can characterize this property making use of
the analysis made in Section 3.3. Let us then consider the
homogeneous advection equation obtained by (5) with  =
0. When uh is taken as in (131), the residual on a space-time
prism PE can be written as (cf. equation (135))

ΦPE = ∫
tn+1

tn ∫E

(
𝜕uh

𝜕t
+ a⃗ ⋅ ∇uh

)
dx dy dt

=
∑
j∈E

|E|
3

(un+1
j − un

j ) +
Δt
2

∑
j∈E

(kju
n
j + kju

n+1
j )

The last expression can equivalently be recast as

ΦPE =
∑
j∈E

|E|
3

(un+1
j − un

j ) +
Δt
2
(𝜙E(un) + 𝜙E(un+1))

where 𝜙E(un) and 𝜙E(un+1) are the steady scalar element
residuals of equation (52) (with  = 0), evaluated at time tn

and tn+1 respectively. Suppose now that a LED splitting of
the steady element residual is given and denote the corre-
sponding local nodal residuals by {𝜙LED

j }j∈E. A trivial split-
ting of ΦPE can then be obtained as

ΦLED
i = |E|

3
(un+1

i − un
i ) +

Δt
2
(𝜙LED

i (un) + 𝜙LED
i (un+1))

One immediately sees from the last expression that this
approach is equivalent to the one of Definition 1, when the
discretization in time is performed with the  scheme,
or equivalently, in the case of the advection equation, with
the trapezium scheme. This remark, combined with Proposi-
tion 4, leads to the following result.

Proposition 14. (Linear positive space-time schemes) A
positive linear space-time  scheme is obtained from a
linear LED  one, upon integration of (16) with the
trapezium or  scheme. The positivity of the resulting
discretization is constrained by the time-step restrictions of
proposition 4.

The last proposition defines a particular class of mono-
tone schemes. However, we have still not exploited to
its maximum the space-time nature of the discretization
defined by Definition 10. This will be done in the following
section.

5.3 Multidimensional upwinding in space-time

The objective of this section is to try to make explicit use of
the local space-time geometry of the prism E × [tn, tn+1] to
construct schemes that incorporate, at the discrete level, the
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Figure 11. Closed shell in E × [tn, tn+1] (a), and space-time directions n1 and n̂1 (b).

directional propagation of the information that is typical of
solutions to (5). The idea is to rewrite the element residual as

ΦPE =
∑
j∈E

(Δtkj

2
+ |E|

3

)
un+1

j +
∑
j∈E

(Δtkj

2
− |E|

3

)
un

j

=
∑
j∈E

k̄ju
n+1
j +

∑
j∈E

k̂ju
n
j (144)

Introducing the space-time flux (a⃗u, u) ∈ ℝ2 ×ℝ, we can
show that the kj and k̂j parameters, implicitly defined by
(144), are the projection of the space-time flux Jacobian
(a⃗, 1) ∈ ℝ2 ×ℝ along directions determined by the geometry
of the prism E× [tn, tn+1]. To do this, we consider the shellE

formed by joining the gravity centers of E at times tn and tn+1

with the nodes of the element at time tn+1/2 = tn + (tn+1 − tn)/2
(Figure 11a). We can associate to each node of the prism
the face of E opposite to it, as illustrated in Figure 11(b)
for node 1. With reference to this last picture, we introduce
the space-time vectors n1 and n̂1, normal to the faces of E

opposite to node 1, pointing inward with respect to the shell,
and scaled by the area of the faces.

Simple geometry shows that

k̄1 = n̄1 ⋅ (a⃗, 1) and k̂1 = n̂1 ⋅ (a⃗, 1)

Since (a⃗, 1) is the direction of a characteristic line cutting
through the prism, we deduce that k1 and k̂1 are the projec-
tions of the direction of the characteristic onto n1 and n̂1. For
the exact solution of the advection equation, all the infor-
mation propagates along (a⃗, 1). We have the possibility to
apply this criterion to design schemes with a true space-time
 character in which node 1 at time tn+1 receives a portion
of ΦPE only if k1 > 0. This philosophy is at the basis of
the schemes proposed in Csík and Deconinck (2002) and
Csík et al. (2003a), the case of prismatic space-time elements
being discussed in Csík et al. (2003a). In particular, one can
introduce space-time inflow and outflow states defined as

ūin =
∑
j∈E

(∑
j∈E

(k̄−j + k̂−j )

)
−1(k̄−j un+1

j + k̂−j un
j )

= −
∑
j∈E

N̄(k̄−j un+1
j + k̂−j un

j ) (145)

and

ūout =
∑
j∈E

(∑
j∈E

(k̄+j + k̂+j )

)
−1(k̄+j un+1

j + k̂+j un
j )

=
∑
j∈E

N̄(k̄+j un+1
j + k̂+j un

j ) (146)

with

N̄ =

(∑
j∈E

(k̄+j + k̂+j )

)−1

(147)

This notation allows to express the residual as

ΦPE =

(∑
j∈E

(k̄+j + k̂+j )

)
(ūout − ūin) (148)

The last equations show the analogy with a one-dimensional
balance along the characteristic line 𝜁 intersecting the prism
E × [tn, tn+1] in uout and uin. Note however that since the k̂j

are not necessarily all negative, uin does not necessarily lie on
the plane t = tn. Similarly, uout does not necessarily lie on the
plane t = tn+1. In general, one will have a configuration as,
for example, the one in Figure 12 (Even though in the most
general situation both uout and uin are inside the prism).
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Figure 12. Space-time inflow and outflow states.
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These concepts allow a natural extension of the 
idea to the space-time framework. To be able to do this,
first we have to enlarge the class of schemes we consider.
As already remarked, Definition 10 gives a time-marching
procedure allowing to compute the unknown at time tn+1,
given its nodal values at time tn. Here, we suppose instead
to be solving on the entire space-time domain at once, on a
discretization that is given by the ensemble of the space-time
prisms E × [tn, tn+1],∀E ∈ h and ∀n = 1,M. In this case, the
fully discrete analog of (5) can be written as∑

E∈i

ΦPn−1∕2
E

i,n +
∑

E∈i

ΦPn+1∕2
E

i,n = 0, ∀i ∈ h,∀n = 2,M − 1

∑
E∈i

ΦPM−1∕2
E

i,M = 0, ∀i ∈ h

where ∀E ∈ h and ∀n = 1,M − 1∑
j∈E

(
ΦPn−1∕2

E

j,n−1 + ΦPn−1∕2
E

j,n

)
= ΦPn−1∕2

E

∑
j∈E

(
ΦPn+1∕2

E

j,n + ΦPn+1∕2
E

j,n+1

)
= ΦPn+1∕2

E

where

ΦPn−1∕2
E = ∫

tn

tn−1 ∫E

(
𝜕uh

𝜕t
+ a⃗ ⋅ ∇uh

)
dx dy dt

and ΦPn+1∕2
E = ∫

tn+1

tn ∫E

(
𝜕uh

𝜕t
+ a⃗ ⋅ ∇uh

)
dx dy dt

So ΦPn+1∕2
E

i,n represents the fraction of ΦPn+1∕2
E distributed to

the node i lying in the time plane t = tn, as illustrated on
Figure 13. We give the following definition of a space-time
multidimensional upwind (ST- ) scheme.

Definition 12. (ST- scheme) A space-time 
scheme is ST- if in the prism Pn+1∕2

E = E × [tn, tn+1]

k̄j ≤ 0 =⇒ ΦPn+1∕2
E

j,n+1 = 0

k̂j ≤ 0 =⇒ ΦPn+1∕2
E

j,n = 0

Proposition 15. (Space-time- schemes and time
marching) A ST- scheme defines a time-marching
procedure if

Δt = tn+1 − tn ≤ min
E∈h

min
j∈E

2|E|
3 k+j

, ∀ n = 1, M − 1

(149)
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Figure 13. Local nodal residuals ΦPn+1∕2
E

1,n+1 and ΦPn+1∕2
E

1,n on the prism

Pn+1∕2
E .

Proof. Owing to (149), k̂+j = 0 in all the elements, and in all
space-time slabs. Hence, in every space-time slab Ω × [tn,
tn+1], a ST- scheme will not distribute any residual to
the nodes at time tn, decoupling the values of uh in these
nodes from its values at time tn+1, thus yielding a true
time-marching procedure. ◽

In Csík and Deconinck (2002) and Csík et al. (2003a),
condition (149) is called the past-shield condition. On
prismatic space-time elements, the past-shield condition is
exactly equivalent to the time-step restriction ensuring the
local positivity of the N scheme with trapezium (or  )
time integration (see equation (87)). This condition allows
to recast space-time- schemes into the framework
of Definition 10. In the following we will always assume
that (149) is satisfied. This allows to simplify our notation,
going back to the labeling ΦPE

i , and ΦPE for the local nodal
residuals and element residual respectively, so as to have
uniform labeling with the previous sections. No confusion is
generated, since (149) guarantees that the characterization
of Definition 10 is valid, and only the nodal values of un+1

are to be computed in Ω × [tn, tn+1].
Hereafter we give some examples of upwind and

space-time upwind schemes.

5.3.1 Upwind and space-time upwind : LDA
schemes

Several extensions of the LDA scheme to the space-time
framework exist. One of these resorts to an analogy with
finite-element PG schemes, thus introducing a consistent
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mass matrix (Maerz and Degrez, 1996; Ferrante and
Deconinck, 1997; Abgrall and Mezine, 2003a). According
to this analogy, a consistent extension of the LDA scheme is
obtained as

ΦLDA−PG
i = ∫

tn+1

tn ∫E

(
𝜓i +

(
𝛽LDA

i − 1
3

))
×
(
𝜕uh

𝜕t
+ a⃗ ⋅ ∇uh

)
dx dy dt

with 𝜓 i the piecewise linear basis functions (11). By
assuming uh to have a bilinear variation, we get

ΦLDA−PG
i =

∑
j∈E

(
mLDA−PG

ij (un+1
j − un

j )

+Δt
2
𝛽LDA

i kj(un+1
j + un

j )
)

mLDA−PG
ij = |E|

3

(
𝛽LDA

i − 1
12

+
𝛿ij

4

)
(150)

with 𝛿ij Kroenecker’s delta.
A different formulation is obtained by distributing the

space-time residual as

ΦLDA
i = k+i NΦh = 𝛽LDA

i ΦPE (151)

with N as in (77). Scheme (152) is equivalent to the one
originally proposed in Caraeni (2000) (see also Caraeni and
Fuchs, 2002, 2005).

Finally one can use the space-time variant of the LDA
scheme given by

ΦST−LDA
i = k̄+i N̄ ΦPE = 𝛽ST−LDA

i ΦPE (152)

where now, owing to the satisfaction of (149), the parameter
N is given by

N̄ =

(∑
j∈E

k̄+j

)−1

(153)

By construction, the LDA-PG, LDA, and space-time low
diffusion A (ST-LDA) schemes all respect the accuracy
condition of Proposition 13, and hence they are formally
second-order accurate.

5.3.2 Upwind and space-time upwind :
N schemes

Two extensions of the N scheme to the space-time framework
exist in literature. The first follows from proposition 14 and
is defined by the space-time local nodal residual

ΦN
i = |E|

3
(un+1

i − un
i ) +

Δt
2

k+i (u
n
i − un

in)

+Δt
2

k+i (u
n+1
i − un+1

in ) (154)

This is the positive first-order space-time N (ST-N) scheme
as proposed in Abgrall and Mezine (2003a). As the LDA
scheme, the N scheme is  but not space-time- .
A scheme with this property, the ST-N scheme, is instead
defined by

ΦST−N
i = k̄+i (u

n+1
i − ūin) (155)

with uin as in (145). The satisfaction of the past-shield
condition guarantees that the ST-N scheme (155) satisfies
the consistency condition (127). Moreover, it has, as the
scheme defined by (86), a subelement LED character, in
space-time, which formally ensures the satisfaction of the
local space-time discrete maximum principle (40). As the N
and the LDA schemes, the ST-N and ST-LDA schemes are
linked by

ΦST−N
i = ΦST−LDA

i + dST−N
i (156)

where dST−N
i is a space-time dissipation term given by

dST−N
i =

∑
j∈E

k̄+i N̄k̄+j (u
n+1
i − un+1

j ) (157)

The space-time nature of this term is such that the ST-N
schemes is generally extremely more dissipative than
scheme (154), as confirmed by the results available in
literature (Ricchiuto, 2005; Ricchiuto et al., 2005a, 2007a;
Csík et al., 2003a). Note also that, while the N scheme
of Abgrall and Mezine (2003a) reduces to the standard N
scheme at steady state, the same is not true for the ST-N
scheme.

5.3.3 Nonlinear schemes

The techniques described in Section 4.4 can also be used in
time-dependent computations, in the space-time framework.
In this case, little is known about the L2 stability of the
resulting schemes (however, see the recent work of Ricchiuto
and Abgrall, 2006).
 space-time schemes can be obtained by applying

mapping (106) either to the N scheme (154) or to the ST-N
scheme (155). The LN scheme and the limited space-time N
(LST-N) scheme are  by construction, and inherit posi-
tivity from the linear schemes since

Φlimited
i = 𝛾iΦlinear

i , 𝛾i ≥ 0

Strictly speaking, last relation makes sense only if the local
positivity of the linear scheme is ensured.
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5.4 Nonlinear conservation laws

The extension to nonlinear conservation laws is achieved
exactly as in the steady case. For example, in the case of the
space-time schemes on bilinear prismatic elements, one can
give the following definition.

Definition 13. (Conservative space-time ) A
space-time  scheme is conservative if there exist a
continuous approximation of the unknown uh, of the flux h

and of the source term h, such that

ΦPE = ∫E
(uh(tn+1) − uh(tn)) dx dy + ∫

tn+1

tn ∮𝜕E
h ⋅ n̂ dl dt

−∫
tn+1

tn ∫E
h dx dy dt (158)

In the homogeneous case, for example, one way to compute
the space-time residual is

ΦPE = ∫PE

(
𝜕uh

𝜕t
+ a⃗(uh) ⋅ ∇uh

)
dx dy dt

=
∑
j∈E

|E|
3

(un+1
j − un

j ) +
Δt
2

∑
j∈E

k̃n+1
j un+1

j + Δt
2

∑
j∈E

k̃n
j un

j

with k̃n+1
j and k̃n

j still defined by (53), except that they are
computed using the mean-value Jacobians

ãn+1 = 2|E|Δt ∫
tn+1

tn ∫E

t − tn

Δt
a⃗(uh) dx dy dt

and ãn = 2|E|Δt ∫
tn+1

tn ∫E

tn+1 − t
Δt

a⃗(uh) dx dy dt

The schemes obtained in this way verify Definition 13
for h =  (uh). This approach leads to a straightfor-
ward extension to the nonlinear case. However, the
need for computing conservative mean-value Jaco-
bians with sufficient accuracy leads to a considerable
computational cost, which can be large when going to
systems.

A simpler approach is to compute the space-time residual
directly as (cf. equation (135))

ΦPE =
∑
j∈E

|E|
3

(un+1
j − un

j ) + Δt
3∑

lj=1

 lj ⋅ n⃗lj − Δt
∑
j∈E

|E|
3

j

(159)
where l1, l2 and l3 are the edges of E, n⃗lj

is the exterior normal
to lj, scaled by the length of the edge and now

 lj = 1
2

NC∑
p=1

𝜔p (un(xp, yp)) +
1
2

NC∑
p=1

𝜔p (un+1(xp, yp))

×(xp, yp) ∈ lj (160)

with un(x, y) and un+1(x, y) piecewise linear. The condition
for second order of accuracy ΦPE = (h4) is already fulfilled
by an exact integration assuming a piecewise linear variation
of the flux, leading to (135). Conservative  schemes
are second-order accurate in space and time. Clearly (159,
160) alone do not give a nodal approximation of (4). A
distribution strategy has to be formulated. This is easily
achieved by combining (159, 160) with the definitions of
the LDA and N schemes given in Section 4.2.3 (see also
Section 4.3.3) and with the conservative formulation based
on contour integration of Section 4.5.1 (see Ricchiuto et al.,
2005a, 2007a for details).

6 EXTENSION TO SYSTEMS
AND APPLICATIONS

We briefly sketch the extension of  schemes to the
discretization of systems of conservation laws and show
numerical results, representative of some of the latest devel-
opments on .

In the first paragraphs, we describe the matrix variant of
 schemes, which is by far the most used in published
literature. Other approaches exist, for which we refer the
reader to the references given in the introduction.

The second part of this section shows the potential of the
schemes in computing in an accurate and nonoscillatory way
complex solutions to conservation laws.

6.1 Matrix residual distribution schemes

Two approaches exist to apply  schemes for the
discretization of hyperbolic systems of conservation laws.
One way to achieve this extension is to use the mathematical
structure of the system, trying to split the coupled equations
into a subset of more or less uncoupled PDEs. For the Euler
equations of gas dynamics, the most successful version of
this approach allows, in the steady two-dimensional case, to
split the system in four uncoupled scalar transport equations
(total enthalpy, entropy, and two Riemann invariants) in
the supersonic case, while in the subsonic case one can
split the systems in two scalar transport equations (total
enthalpy, entropy) plus a coupled elliptic subsystem (hyper-
bolic elliptic splitting) (Paillère, 1995; Nishikawa et al.,
2001). The advantage of this technique is that it allows to
discretize each split equation (or system) with a different
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scheme. In the hyperbolic elliptic splitting of Nishikawa
et al. (2001), for example, the scalar equations are solved
by a high-order monotone  scheme, while the elliptic
subsystem is discretized with a least squares approach or
with a LW (matrix) distribution scheme. This approach has
been widely used in the early years of the development of
 schemes for compressible flow simulations (Struijs
et al., 1991; Paillère, 1995; Mesaros, 1995).

Although quite powerful, this technique has some impor-
tant limits in the fact that it does not generalize to the
three-dimensional (and time-dependent) case and that it is
tailored to a particular set of equations.

A more general approach is the so-called matrix approach,
initially proposed in van der Weide and Deconinck (1996)
and van der Weide et al. (1999). The idea underlying
matrix  schemes is to extend formally scalar distribu-
tion schemes to systems, by replacing vector Jacobians by
matrices, whose eigenstructure is used to obtain an upwind
discretization. The extension of this approach to three space
dimensions, to the time-dependent case, and to any system
of equations does not present any difficulty. In the next
paragraphs, we briefly review the matrix  approach. The
reader is referred to the bibliography for a more extensive
overview on the subject.

6.1.1 Linear hyperbolic systems of PDEs

Consider the linear symmetric hyperbolic system of PDEs

𝜕u
𝜕t

+ A1
𝜕u
𝜕x

+ A2
𝜕u
𝜕y

= 0

on ΩT = Ω × [0, tf ] ⊂ ℝd ×ℝ+ (161)

with u being a vector of m unknowns. To illustrate the basic
idea of the matrix approach, it suffices to assume on h, an
unstructured triangulation of Ω, a piecewise linear discrete
representation of the unknown uh of type (9), and compute
on E ∈ h the spatial residual

𝛟E = ∫E

(
A1
𝜕uh

𝜕x
+ A2

𝜕uh

𝜕y

)
dx dy

Straightforward calculations immediately lead to

𝛟E =
∑
j∈E

Kjuj, Kj =
1
2
(A1njx + A2njy) (162)

which is formally identical to (52) in the homogeneous case,
except that in (162) the kj parameters have been replaced by
matrices. In particular, the system being hyperbolic, the Kj

matrices admit a decomposition in a positive and a negative

part, in the standard matrix sense

K±
j = 1

2
(Kj ± |Kj|), |Kj| = Rj|Λj|R−1

j (163)

with Rj the matrix of the right eigenvectors of Kj, Λj the
diagonal matrix of the eigenvalues, and |Λj| the diagonal
matrix of the absolute values of the eigenvalues of Kj. With
this basic notation, one can easily write the matrix variant of
the distribution schemes described in the previous sections.

In particular, matrix extensions of the LDA and of the N
schemes are defined by the split residuals

𝛟LDA
i = 𝛃LDA

i 𝛟E, 𝛃LDA
i = K+

i N, N =

(∑
j∈E

K+
j

)−1

(164)
and

𝛟N
i = K+

i (ui − uin), uin = −N
∑
j∈E

K−
j uj (165)

For symmetrizable systems, the existence of matrix products
of the type K+

i N is proved in Abgrall (2001) and Abgrall and
Mezine (2003b).

The extension to the time-dependent case is obtained in
a similar fashion, the space-time schemes of Definition 10
admitting a natural matrix formulation. For example, on
bilinear elements the space-time residual is easily shown to
be

𝚽PE = ∫
tn+1

tn ∫E

(
𝜕uh

𝜕t
+ A1

𝜕uh

𝜕x
+ A2

𝜕uh

𝜕y

)
dx dy dt

=
∑
j∈E

|E|
3

(un+1
j − un

j ) +
Δt
2

∑
j∈E

(Kju
n+1
j + Kju

n
j )

(166)
Nodal discrete equations are obtained by splitting in every
PE ∈ h the residual (166), as described by Definition 10. For
example, with the obvious meaning of the symbols, matrix
variants of the N scheme (154) and of the ST-N scheme (155)
are defined by

𝚽N
i = |E|

3
(un+1

i − un
i ) +

Δt
2

K+
i (u

n
i − un

in)

+Δt
2

K+
i (u

n+1
i − un+1

in ) (167)

and by

𝚽ST−N
i = K̃+

i (u
n+1
i − ũin)

ũin = −Ñ
∑
j∈E

(K̃−
j un+1

j + K̂−
j un

j ) (168)
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where

Ñ =

(∑
j∈E

(K̃+
j + K̂+

j )

)−1

, K̃j =
Δt
2

Kj +
|E|
3

I

K̂j =
Δt
2

Kj −
|E|
3

I

with I the identity matrix.

6.1.2 Analysis of matrix  schemes

Only a few comments are given on the formal properties
of matrix  schemes. The easiest task is the characteri-
zation of the accuracy of the discretization, as the analysis
of Section 4.2.1 generalizes immediately to systems. Also
in the case of the energy stability, the results available for
the linear first-order schemes extend to their matrix counter-
part (Abgrall and Barth, 2001, 2002; Abgrall and Mezine,
2003a,b, 2004; Barth, 1996).

The issue of the nonoscillatory character of the discretiza-
tion is more delicate. In the system case, a real maximum
principle for the exact solution does not exist. In the frame-
work of schemes, an attempt to give a characterization of
the nonoscillatory character of discretizations of (161) is due
to Abgrall and Mezine (2003b, 2004). Arguing that solutions
to (161) are generally piecewise smooth, with no oscillations
in correspondence of discontinuities, in the references the
authors use a wave decomposition technique to derive esti-
mates on the maximum norm of the components of the nodal
solution vectors for the case of symmetric systems. Here, we
give no further details on this, referring to the mentioned
papers for details. We limit ourselves to recalling that the
matrix variants of scalar first-order LED schemes do respect
a monotonicity condition, in the sense of Abgrall and Mezine
(2004).

Finally, concerning the construction of nonlinear limited
matrix distribution schemes (cf. Section 4.4.2), we recall the
technique proposed in Abgrall and Mezine (2004), and used
to obtain the results discussed later. This technique is thor-
oughly discussed in Abgrall and Mezine (2004) and Abgrall
and Mezine (2003b) and finds its theoretical justification in
the L∞ stability criterion introduced in the same references.
The idea is quite simple: given a monotone scheme with
nodal residuals 𝛟

i and a local direction 𝜉, decompose the
nodal residuals as

𝛟
i =

∑
𝜎

⟨l𝜎,𝛟
i r𝜎 =

∑
𝜎

𝜑,𝜎
i r𝜎

with l𝜎 the left eigenvectors of K = A1𝜉1 + A2𝜉2. Each 𝜑,𝜎
i

is treated as a scalar residual, and limited. The nodal residuals
of the nonlinear scheme are obtained by projecting back

in physical space: 𝛟i =
∑
𝜎𝜑

𝜎
i r𝜎 . The mappings used here

are basically the same that can be used in the scalar case
(Abgrall and Mezine, 2003b, 2004; Abgrall and Roe, 2003),
for exmple, mapping (105) (or equivalently (106)). Note
that, even though the contruction makes use of an arbitrary
direction 𝜉, in practice the results are little affected by its
choice (Abgrall and Mezine, 2004).

While the well-posedness of the procedure is still subject
to Proposition 10 (applied to each scalar wave), at present
no results exist on the stability of the resulting nonlinear
scheme, in the L2 sense. It is observed in practice that these
 nonlinear schemes show a very sharp and monotone
capturing of single or interacting discontinuities. However,
their performances are not entirely satisfactory in smooth
regions. As already remarked, this fact is a consequence of
the strong L∞ flavor of the construction, and it is still a
subject of research. We refer the reader to Abgrall (2006)
and Ricchiuto and Abgrall (2006) for a recent study of this
issue.

6.1.3 Nonlinear systems of conservation laws

As in the scalar case, the passage to nonlinear conservation
laws has to guarantee the conservative nature of the final
discretization. The thorough discussion of Section 4.5.1 is
also valid in the system case, and will not be repeated here.
We limit ourselves to recalling an important particular case,
for which a simple exact mean-value linearization exists.
Then we recall more general ways of handling the nonlin-
earity (Abgrall and Barth, 2002; Csík et al., 2002; Ricchiuto
et al., 2005a).

Consider the issue of computing steady solutions to (1) in
the homogeneous case. Given an unstructured discretization
of the spatial domain, we proceed as in Definition 1, and
compute the spatial residual

𝛟E = ∫E
∇ ⋅  h(uh) dx dy

Let us denote by w a set of primitive variables (not neces-
sarily u) that are assumed to vary piecewise linearly over the
mesh, as in (9). We rewrite the residual as

𝛟E = ∫E

𝜕 (wh)
𝜕w

⋅ ∇wh dx dy

=
(
∫E

𝜕 (wh)
𝜕w

dx dy

)
⋅ ∇wh|E =

∑
j∈E

K̃jwj

with  (wh) =  (u(wh)), and with

K̃j =
1
2

̃𝜕
𝜕w

⋅ n⃗j,
̃𝜕
𝜕w

= 1|E|∫E

𝜕 (wh)
𝜕w

dx dy (169)
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The computation of the exact mean-value flux Jacobian,
needed in the definition of K̃j, can be quite costly, if not
impossible. While the technique proposed in Abgrall and
Barth (2002) (see also Section 4.5.1) represents a practical
solution to get a good approximation of this quantity for
any arbitrary (symmetrizable) system of conservation laws,
the issue of the cost of the computation remains. An impor-
tant exception to this is the system of the Euler equations
for a perfect gas. In this case, in fact, it has been shown
that the components of the flux tensor can be written as
quadratic polynomials in terms of the components of a multi-
dimensional generalization of Roe’s parameter vector z (Roe,
1981). Hence, assuming zh to be the piecewise linear vari-
able, as in (9), and the entries of the flux Jacobians being
linear in the components of zh, an exact mean-value lineariza-
tion is obtained simply by evaluating them in the arithmetic
average of the nodal values of zh over E. This simple conser-
vative linearization, due to Deconinck et al. (1993), allows
the application of matrix  schemes to the Euler equations
in a simple and effective way.

The Euler equations for a perfect gas are a lucky coinci-
dence, simple conservative linearizations being in general
hard to find. One solution to this problem is the approach
based on approximate Gaussian quadrature of Abgrall and
Barth (2002), which however has the drawback of being
computationally demanding. In practice, the most effective
approach is the conservative formulation of Csík et al. (2002)
and Ricchiuto et al. (2005a). The elements given in this
section, and in Sections 4.5.1 and 5.4, allow us to easily
write down conservative matrix variants of  schemes,
just by replacing the scalar upwind parameters k+j with
matrix upwind parameters K+

j evaluated using an arbitrary
linearized state over the element.

6.2 Some numerical results

To show the potential of the  approach in computing
complex solutions of nonlinear conservation laws, we
present some illustrative numerical results. To validate
the  approach, we use well-known tests involving the
solution of the Euler equations for a perfect gas. To show
the flexibility of the approach adopted for conservation,
we consider the solution of a simple model of homoge-
neous two-phase flow, which, owing to the nonlinearity of
the equations of state (EOS), presents all the generality
of systems of conservation laws with complex thermody-
namics. Finally, the shallow-water equations are chosen
as an application showing the potential of residual-based
discretizations.

All the results presented are obtained on grids with the
irregular topology reported on Figure 14, using schemes

Figure 14. Unstructured triangulation.

based on the conservative approach of Csík et al. (2002)
and Ricchiuto et al. (2005a). The distribution is achieved
either by means of the conservative matrix variant of the
N scheme (154) (in the following text simply referred to as
the N scheme), or its limited nonlinear  variant (in the
following text referred to as the LN scheme).

Euler equations: double Mach reflection
This problem is a severe test for the robustness and the
accuracy of schemes designed to compute discontinuous
flows containing complex structures (Woodward and Colella,
1984). It consists of the interaction of a planar right-moving
Mach 10 shock with a 30 degree ramp. We refer to Woodward
and Colella (1984) for details concerning the setup of the test.
The simulation has been run on an unstructured triangulation
with h= 1/100 until time tf = 0.2. We present in Figure 15 the
density contours obtained (on the same mesh) with the LN
scheme and with a second-order cell-centered  scheme
using Roe’s numerical flux, linear reconstruction and limiter
proposed in Barth and Jespersen (1989), and a second-order
Runge–Kutta (RK) time integrator. The  LN scheme
clearly shows sharper approximation of the shocks, and a
much better resolution of the contact emanating from the
triple point and of the jet on the ramp.

Euler equations: a shock–shock interaction
We consider one of the two-dimensional Riemann problems
studied in Kurganov and Tadmor (2002) and later also in De
Palma et al. (2005) and Ricchiuto et al. (2005a). It consists
of the interaction of two oblique shocks with two normal
shocks. See Figure 16 for a sketch of the initial solution
(details can be found in Kurganov and Tadmor, 2002, De
Palma et al., 2005, and Ricchiuto et al., 2005a). We compare
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Figure 15. Double Mach reflection. Cell-centered  scheme (a), and LN scheme (b).
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Figure 16. Shock–shock interaction. Initial solution.

the results obtained on the same grid (h = 1/200) with the LN
scheme, and with a second-order cell-centered  scheme
(Barth and Jespersen, 1989) with second-order RK time
integration.

We visualize the contours of the density on Figure 17.
The nature of the flow is quite complex. The interaction
generates two symmetric lambda-shaped couples of shocks
and a downward moving normal shock. Strong slip lines
emanate from the lower triple points and interact with
one of the branches of the upper lambda-shocks. A jet of
fluid is pushed from the high-pressure region (state a in
Figure 16) against the normal shock. Compared to the 
scheme, the LN scheme gives a richer solution. The onset of
Kevin-Helmholtz instabilities along the contact lines inter-
acting with the upper lambda-shock is already visible on
this mesh.

6.2.1 A two-phase flow model

Consider now the system of conservation laws defined by the
following set of conserved variables and fluxes:

u =
⎡⎢⎢⎢⎣
𝛼g𝜌g

𝛼l𝜌l

𝜌u
𝜌v

⎤⎥⎥⎥⎦ ,  (u) =
⎡⎢⎢⎢⎣
𝛼g𝜌gu 𝛼g𝜌gv
𝛼l𝜌lu 𝛼l𝜌lv
𝜌u2 + p 𝜌uv
𝜌uv 𝜌v2 + p

⎤⎥⎥⎥⎦ (170)

where 𝛼g and 𝛼l are the gas and liquid volume fractions, 𝜌g

and 𝜌l are gas and liquid densities, u⃗ = (u, v) is the local flow
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Figure 17. Shock–shock interaction.  scheme (a) and LN scheme (b).

speed, 𝜌 is the mixture density

𝜌 = 𝛼g𝜌g + 𝛼l𝜌l (171)

and p is the pressure. The model is closed by the relation
𝛼g + 𝛼l = 1, and by the EOS relating the densities to the
pressure. In the following text, we will denote by 𝛼 the gas
volume fraction, often referred to as the void fraction. We
assume implicitly that 𝛼l = 1 − 𝛼. Concerning the EOS, we
have used, as in Paillère et al. (2003), the following relations
representative of air and water:

p = Γg

(
𝜌g

𝜌g0

)𝛾g

and p = Γl

[(
𝜌l

𝜌l0

)𝛾l

− 1

]
+ pl0

(172)
The values of all the constants in the EOS are taken as in
Paillère et al. (2003), Ricchiuto et al. (2005a), and Ricchiuto
(2005). This system of conservation laws constitutes a
fairly simple model of homogeneous air-water two-phase
flow. However, the relation between the pressure and the
conserved mass and momentum fluxes is so complex that a
conservative linearization can hardly be derived. Because of
the nonlinearity of the EOS, pressure and volume fractions
cannot be computed in closed form from the conserved
variables. Instead, combining the EOS and the relation
𝛼l = 1 − 𝛼, a nonlinear equation for the pressure is obtained,
which can be solved in a few Newton iterations (Paillère
et al., 2003).

6.2.1.1 Two-phase flow model: Mach 3 moving shock
We consider the computation of a planar shock moving
in a quiescent two-phase mixture containing 50% gas
and 50% liquid (𝛼lR = 𝛼gR = 0.5) at a pressure pR = 106.

The shock Mach number is set to MS = 3. The spatial
domain is the rectangle [0, 2]× [0, 0.1]. We have run the
simulations on an irregular triangulation with element
size h= 1/100. Periodic boundary conditions are imposed
on the top and bottom boundaries. The final time of the
simulation corresponds to a displacement of the exact
shock location (computed analytically) by a unit length.
We present the solutions of the conservative N and LN
schemes. The output is visualized by extracting the data
along the line y= 0.05. The results are reported in Figure 18.
The shock position is correctly simulated, confirming the
conservative character of the discretization. The nonoscil-
latory character of the results is evident. The nonlinear
scheme gives a very sharp and monotone capturing of the
discontinuity.

6.2.1.2 Two-phase flow model: A shock-bubble interaction
We now consider a two-phase variant of the shock-bubble
interaction presented for the Euler equations. The initial
solution consists of a planar shock with MS = 3 moving into
an undisturbed quiescent mixture characterized by 𝛼R = 0.8
and pR = 105. On the right of the shock, we impose a
stationary circular discontinuity in which the void fraction
jumps to 𝛼 = 0.95. This bubble is centered at x = 0.3 and
y = 0, and its radius is rb = 0.2. We present the results
obtained with the LN and LST-N schemes on an unstructured
grid with reference element size h = 1/200, at several time
instances.

From the Figure 19 we see the shock partially trans-
mitted through the void fraction discontinuity and partially
reflected as an expansion, while the contact itself is set
into motion. Once the undisturbed shock has crossed
the region occupied by the whole circular discontinuity,
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Figure 19. Two-phase shock-bubble interaction, LN scheme. Mixture density at t = 0.003, t = 0.005, t = 0.015, and t = 0.02.
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and has joined the transmitted shock, the interface of
the contact folds, rolling-up into a symmetric structure.
The LN scheme gives a crisp resolution of the contact,
its wavy structure showing the glimpse of an inviscid
instability.

6.2.2 Shallow water flows:  schemes
and well-balancedness

This last section discusses a few of the results obtained in
Ricchiuto (2005) and Ricchiuto et al. (2007a) by solving the
shallow-water equations with conservative schemes of Csík
et al. (2002) and Ricchiuto et al. (2005a). This system of
equations can be written as (1), with

u =
⎡⎢⎢⎣

H
Hu
Hv

⎤⎥⎥⎦ ,  (u) =
⎡⎢⎢⎢⎣

Hu Hv

Hu2 + g H2

2
Huv

Huv Hv2 + g H2

2

⎤⎥⎥⎥⎦
(u, x, y) = −gH

⎡⎢⎢⎢⎣
0

𝜕B(x,y)
𝜕x

𝜕B(x,y)
𝜕y

⎤⎥⎥⎥⎦ (173)

with H the local relative water height, u⃗ = (u, v) the flow
speed, g the gravity acceleration, and B(x, y) the local height
of the bottom (see Figure 20). We also define the total water
height Htot = H + B.

The shallow-water equations admit several classes of
known exact solutions. Among these, we are interested in
the lake-at-rest solution

Htot = H0 = const, H = H0 − B(x, y), u = v = 0

The following result is proved in Ricchiuto (2005) and
Ricchiuto et al. (2007a).

Proposition 16. ( schemes and the lake-at-rest solu-
tion)   schemes preserve exactly the lake-at-rest
solution, provided that the same numerical approximation is
used for H and B, and provided that the element residual is

B (x, y)

x

HHtot = H + B

u
→

Figure 20. Shallow-water equations: basic unknowns.

computed exactly with respect to this approximation. This is
true independently on topology of the mesh, the regularity of
B(x, y), and polynomial degree of the approximation.

This proposition shows the big advantage of the residual
approach at the basis of the  discretization, and
generalizes the numerical observations of Brufau and
Garcia-Navarro (2003) and references therein.

6.2.2.1 Still flow over smooth bed
We verify Proposition 16 experimentally. On the domain
[0, 1]2, we consider an initial state in which the velocity is
zero and H = 1 − B(x, y) with (LeVeque, 1998; Xing and
Shu, 2005; Seaïd, 2004)

B(x, y) = 0.8e−50((x−0.5)2+(y−0.5)2)

We compute the solution up to time t = 0.5 with the LN
scheme on an irregular triangulation and h = 1/100. In
Table 1, we report the values (computation run in double
precision) of the norms of the errors on water height and
velocity components. The results obviously confirm the theo-
retical result of the proposition. The numerical output is
similar ∀ t > 0.

6.2.2.2 Water height perturbation over smooth bed
We now consider a problem involving a perturbation of the
exact lake-at-rest solution. The objective is to verify that the
schemes are able to resolve the evolution of the perturbation
and its interaction with the bed shape, without spoiling the
exact lake-at-rest state in unperturbed regions. The spatial
domain is the rectangle [0, 2]× [0, 1]. Initial state and bottom
shape are chosen as in Seaïd (2004) and Xing and Shu (2005).
In particular, we set

B(x, y) = 0.8e−5(x−0.9)2−50(y−0.5)2

At t = 0 the velocity is set to zero everywhere, while the
relative water height is set to

H =
{

1.01 − B(x, y) if 0.05 < x < 0.15
1 − B(x, y) otherwise

Table 1. Norm of the errors at time t = 0.5, LN scheme.

L∞ L1 L2

H 7.491837e-17 7.085969e-17 7.107835e-17
u 7.478237e-17 7.161000e-17 7.169336e-17
v 7.478237e-17 7.177553e-17 7.177653e-17
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Figure 21. Water height perturbation over smooth bed. Solution of the LN scheme at t = 0.12 (left) and t = 0.48 (right). Top: contour plot
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We solve the problem on an unstructured discretization of
the domain with reference mesh size h = 1/100. In Figure 21
we visualize the results obtained with the space-time
LN scheme at t = 0.12 and t = 0.48, in terms of total
water height contours (top pictures) and water height
distribution at y = 0.5 (bottom pictures). The following
observations can be made. In the region ahead of the
perturbation, the exact solution is perfectly preserved
up to machine accuracy, while behind the perturbation
the solution quickly gets back to the lake-at-rest state.
Compared to the results of Xing and Shu (2005), obtained
with a fifth-order finite difference weighted essentially
non-oscillatory (WENO) scheme on a structured mesh
with h = 1/100, our results reproduce the interaction well.
The small structures contained in the reference solution
are visible in the results of the LN scheme. Obviously, the
use of a very high-order discretization is beneficial when
approximating this type of problem. Nevertheless, on an
irregular unstructured triangulation, the LN scheme gives a
rich solution structure, while yielding a monotone approx-
imation, and preserving exactly the lake-at-rest state in the
unperturbed region.

7 CONCLUSIONS, ONGOING WORK,
AND OPEN ISSUES

7.1 General summary

This paper has reviewed the basics of the  method-
ology and some of its theoretical foundations. We have tried
to analyze the core ingredients of the method rather than
focusing on engineering applications. These ingredients are
as follows:

1. a simple way to obtain high-order accuracy on unstruc-
tured grids, depending only on the polynomial approx-
imation space and on the use of a bounded distribution
strategy;

2. the strong emphasis on L∞ stabilization ({viz.} mono-
tonicity) relying on the theory of positive coefficient
schemes;

3. a truly multidimensional upwinding strategy allowing to
more faithfully mimic the directional propagation of the
information typical of solutions to conservation laws;
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4. the extension to time-dependent equations by a
space-time approach;

5. a general conservative formulation that does not rely on
any ad-hoc linearization;

6. the extension to systems by an algebraic matrix general-
ization justified by a simple wave analysis.

In no way this contribution has given an exhaustive
overview of the present state of the method and of the
ongoing research on the subject of residual-based discretiza-
tions. For example, we have completely left out the recent
work of Lerat and Corre on RBC (residual-based compact)
schemes (Lerat and Corre, 2001, 2002; Corre et al., 2005),
which is based on the very same idea of constructing a
discretization in which the main actor is a local approxi-
mation of the original mathematical equation as a whole,
rather than a discrete approximation of the partial derivative
themselves.

Despite the effort put in its development since the 1980s,
it is still not possible to claim that the method is mature,
although impressive results have been obtained. The domain
is still in full development and much progress can be
expected in the coming years. In the following paragraphs,
we attempt to illustrate the presently most active research
lines, by reviewing recent work of the different groups active
in this field. We also try to underline the weak points, and of
course the areas for future research.

7.2 Monotonicity and stability

Owing to their nature,  schemes hardly allow a proper
stability analysis, especially in the energy or entropy norms.
The understanding of the importance of multidimensional
upwinding itself in this matter is probably quite limited.
This partly explains the fact that for years most (or all) of
the nonlinear  discretizations that have been proposed
in literature suffer from a lack of nonlinear iterative conver-
gence, often endangering the ability of obtaining optimal grid
convergence rates, especially when dealing with nonlinear
systems.

This has been found to be true for most blended schemes
(see Section 4.4.1 and Abgrall, 2001; Csík et al., 2002; Dobeš
and Deconinck, 2006), and it is especially true for the limited
schemes for systems, briefly described in Section 6.1.2. An
analysis of this problem has been given recently in Abgrall
(2006). In the reference, it is argued that the problem is
of algebraic nature, and it is strictly tied to the issue of
properly defining upwinding, especially for systems. The
cure proposed in the reference is based on a stabilization
technique since long known in the finite-element community,
and very close to the one used in Lerat and Corre (2001,

2002), and Corre et al. (2005) to construct dissipative RBC
schemes.

We also mention that different strategies for constructing
nonoscillatory  discretizations have been proposed.
Among these, the flux corrected transport (FCT) procedure
of Zalesak (1979), has been used for example in Hubbard and
Roe (2000) and De Palma et al. (2001). A novel procedure,
with many similarities with FCT, has also been recently
proposed in De Palma et al. (2005).  schemes based
on WENO reconstructions have also recently appeared
(Chou and Shu, 2006), while, in the context of higher-order
schemes, the idea of limiting the polynomial representation
of the variables (in a more classical, -like sense), has
been put forward in Hubbard (2007).

At present, a throughout comparison of these different
approaches has not been performed. Certainly, the study
of nonlinear nonoscillatory discretizations is far from
finished, almost each group proposing a different strategy.
Perhaps, better schemes will come also with better under-
standing of the dissipative properties of  in the system
case. This remains, however, one of the important open
issues concerning ; especially, in general situations
(item-dependent, source terms, very high order of accuracy,
etc.).

7.3 Very high order of accuracy

One of the most basic issues left out of this paper is the
construction of schemes of arbitrary high order of accuracy.
The formal theoretical framework to achieve this is mainly
due to Abgrall and Roe (2003) (see also Abgrall, 2005). We
also refer to the analysis reported in Ricchiuto et al. (2007a),
which is inspiration for Section 3.2. The potential of 
discretizations in this sense is summarized by Definition 3:
as long as the splitting is performed with bounded distri-
bution coefficients, the formal accuracy is determined only
by the polynomial representation of the unknown used to
compute the element residual. This observation is the basis
for almost all the proposed higher-order discretization of the
 type. Concerning the respect to the improved polyno-
mial representation, two basic approaches have appeared in
literature.

The first, originally proposed in Caraeni (2000) (see also
Caraeni and Fuchs, 2005), is based on a reconstruction of
the gradient of the solution, which of course allows a local
higher-order polynomial approximation. Developments on
this line have been proposed by several authors. We mention
the work of Nishikawa et al. (2001) where this strategy
has been coupled to a clever splitting of the hyperbolic
and elliptic parts of the two-dimensional Euler equations,
each solved with a higher-order scheme (upwind for the
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hyperbolic equations, while a least squares type approach is
used for the elliptic operator). The overall strategy allows to
compute very accurately solutions in flow regimes ranging
from potential to supersonic flow. We also mention the recent
work of Rossiello et al. (2007), where improved formu-
lations of the third-order schemes of Caraeni (2000) are
proposed. Following the analysis of Abgrall and Roe (2003)
and Abgrall (2005), in Rossiello et al. (2007) the authors
derive the conditions for a scheme to be kth order, and then
propose schemes with improved stability with respect to the
ones of Caraeni (2000). Monotonicity is enforced via the
procedure proposed by the same authors in De Palma et al.
(2005).

A different framework has been set up instead in Abgrall
and Roe (2003). The idea in this case is to locally store all
the DOF necessary to build a second (or higher) degree poly-
nomial approximation of the unknowns, and derive discrete
equations for all the DOF. In its original formulation, the
method employs Pk Lagrangian triangular finite elements,
k being the degree of the discrete polynomial, even though
any other continuous set of polynomial basis functions can
be chosen. Unpublished results for a steady-state convection
equation using the LDA scheme on subtriangulated P2 trian-
gles were already obtained in 1995 by the first author and
T.J. Barth during a summer visit at NASA Ames. Discretiza-
tions built following this philosophy have been proposed
for example in Abgrall and Tavé (2006), where following
Abgrall (2006) a procedure to construct simplified stable and
monotone centered very high order schemes is described,
and in Ricchiuto et al. (2005b) where upwind  schemes
up to fourth order are presented. We also mention the work
of Ricchiuto et al. (2003a) and Abgrall et al. (2005), in
which the same approach is used to construct schemes for
time-dependent problems.

These two basic philosophies have been compared in
Hubbard (2007), where a novel strategy to build mono-
tone schemes via an edge-based limitation of the unknown
polynomial variation is proposed, and in Nishikawa (2005),
where several ways of including higher (second) order
derivative terms in the discretization are discussed.

It is worth mentioning that some work has also been done in
a different direction, namely trying to improve the accuracy
by extending the stencil of the schemes. At present, this tech-
nique only works on structured, and nonsmooth structured
meshes. We mention, as an example, the schemes proposed
in Hubbard and Laird (2005), in which a truncation error
analysis has been used to devise extended stencil distribu-
tion strategies on structured grids, allowing to reach third
order of accuracy. In Chou and Shu (2006), instead, the
idea of k-exactness preservation of Definition 3 has been
combined with a (nonlocal) WENO variable representation
to build schemes up to fourth order of accuracy. This work

has been extended to viscous problems in Chou and Shu
(2007).

Two possible directions for future research can be
mentioned: the study of improved polynomial approxi-
mations and the understanding of the discrete stability of
higher-order residual distribution schemes. Regarding the
polynomial approximation of the unknown, at present two
main approaches exist: the reconstruction of solution gradi-
ents at the nodes to locally build a higher-degree polynomial,
and the use of higher-degree Lagrange finite elements (see
Hubbard, 2007 and references therein for a review). Possible
alternatives could be the use of ENO/WENO approxima-
tions, as in Chou and Shu (2006), or the use of finite elements
based polynomial interpolants through Gauss-Lobatto points
(see for example Eskilsonn and Sherwin, 2005 and refer-
ences therein). As far as the stability of higher-order residual
distribution schemes is concerned, an important point will
be the understanding of the conditions to be verified for
the discrete equations to admit a unique solution. The need
for a stability criterion is evident from the work reported
in many recent publications (Abgrall and Tavé 2006;
Chou and shu, 2007; Rossiello et al., 2007). The lack of a
general variational formulation allowing the construction
of energy estimates or of any other theoretical tool will
certainly make the derivation of such conditions a difficult
task.

7.4 Quadrilaterals and hybrid meshes

Another basic issue, which is not dealt with in this contri-
bution, is the use of the  idea on nontriangular meshes.
Two main difficulties arise when trying to perform such an
extension.

The first is related to conservation and to the lack of a
simple conservative linearization on general elements. This
issue is analyzed in detail in Abgrall and Barth (2002).
However, the most successfully approach to deal with this
problem appears to be the one proposed in Quintino et al.
(2002) (see also Csík et al., 2002), later adopted by all
authors in the field.

The second difficulty is peculiar to the case of quadrilateral
(hexahedral in three dimensions) elements, and continuous
variable representation. It is in fact long known (Rudgyard,
1993) that on quadrilateral meshes  schemes suffer from
the appearance of spurious modes polluting the numerical
results. On regular quadrilateral grids, this has been shown
with a Fourier analysis in Rubino (2006) and De Palma
et al. (2006). For second-order schemes, the Fourier analysis
nicely allows to highlight the high-frequency instability
flawing all  schemes (and in general k-exact schemes,
with bounded distribution coefficients); we refer to Rubino
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(2006) for the general analysis. Surprisingly enough,
one way to cure this instability comes from the work of
Abgrall (2006), concerning the analysis of nonlinear limited
schemes. Even though different in nature, the instability on
quadrilaterals can be suppressed by adding to the discretiza-
tion the same dissipation term used in the reference to
stabilize the nonlinear schemes. This has been clearly shown
in Abgrall and Marpeau (2007) for the scalar and system
case. In the scalar case, the same technique has been used in
De Palma et al. (2006).

With respect to the same subject, it is worth mentioning
that the WENO  schemes of Chou and Shu (2007)
operate on quadrilateral meshes. Being based on a discon-
tinuous WENO approximation of the unknown, however, the
schemes proposed in these references do not seem to suffer
from the same type of instability.

7.5 Time-dependent problems

The improvement of  discretization for unsteady prob-
lems is also a very important subject of research. It is now
evident that the way to go is to define an element residual
containing the time derivative. This can however be done in
different ways.

One way to do this is to investigate on the consistent form
of the mass matrix. As already mentioned, an interesting
analysis on this subject, based on geometrical reasoning,
is performed in De Palma et al. (2005). In the reference,
conditions allowing construction of consistent mass matrices
for second-order schemes are given. Following the ideas of
Caraeni (2000), an attempt to extend this work to third order
of accuracy can be found in Rossiello et al. (2007).

A different line of research considers the use of simpli-
fied formulations, following the ideas proposed in Abgrall
(2006). Promising initial results have been presented in
Ricchiuto and Abgrall (2006) and Bollermann (2006).

Finally, concerning the construction of very high order
schemes for time-dependent problems, we also mention the
work of Abgrall et al. (2005), and Ricchiuto et al. (2003a).

Also in this case, the greatest challenge is represented
by the understanding of the stability of the discretization.
From this point of view, space-time schemes might present
some advantages, especially when going to very high degree
polynomial interpolation.

7.6 Viscous flow

The extension of the  philosophy to the solution of
viscous flow problems seems to be one of the hardest
problems at present. Even for continuous variable
representations, the gradient of the discrete unknowns is

always discontinuous across element edges, which renders
a straightforward extension of the schemes impossible. To
deal with this fact, two different approaches have appeared
in literature.

The first approach has its roots in the initial work of Caraeni
(2000) in which the author tries to exploit at best the proper-
ties of  schemes by defining a residual that contains the
second-order derivatives as well. To deal with the discon-
tinuity of the gradient of the discrete unknowns (hence of
the viscous fluxes), the author proposes to perform a recon-
struction of the nodal gradients of the variable, which are
then used to build a locally continuous polynomial for the
gradient. The main works that have followed these lines
are the ones of Nishikawa and Roe (2004, 2005b, 2006),
and Nishikawa (2005). The idea emerging from the refer-
ences is that, by rewriting an advective-diffusive problem as
a first-order system, one can then apply the  technology
without any complication concerning the variable represen-
tation. Since the gradient of the solution is part of the discrete
unknowns, and hence represented with the same continuous
polynomial, a residual containing the dissipative fluxes can
be easily defined. The main drawback of this approach is
perhaps the augmentation of the number of unknowns, since
now the components of the viscous fluxes (more generally
the components of the viscous stress tensor) have to be
solved for explicitly. Note however, that a simple variable
count will still show a net advantage over methods based on
discontinuous variable representation such as discontinuous
Galerkin.

A different approach tries to make use of a PG analogy to
couple the  discrete advective operator, with a Galerkin
or PG discrete approximation of the diffusion operator.
In this approach, the main problem is to properly define
the coupling between the  discretization of the advec-
tive operator, with the Galerkin, or PG, approximation of
the diffusion term, such that the overall discretization has
uniform accuracy over the whole range of cell Reynolds
numbers (i.e. mesh sizes). The reader may consult Ricchiuto
et al. (2005b, 2007b) for an overview on how this can be
achieved. This approach does not introduce extra variables.
The problem is that no unique PG formulation of  exists,
and that a sound variational formulation allowing stability
and error analysis is also lacking. As a consequence, a real
understanding of the properties of the discretization is hard to
achieve, and choices are often made by intuition and analogy
with classical PG discretizations.

It is worth mentioning a Fourier analysis of discretizations
for the advection diffusion equation performed in De Palma
et al. (2006). The reader is also referred to Chou and Shu
(2007) for the extension of the work done in Chou and Shu
(2006) on WENO  schemes to the viscous case. In the
last reference, in particular, the discontinuity of the viscous
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fluxes posed no particular problems since the unknown itself
is discontinuous, and numerical fluxes replace the physical
ones at cell interfaces.

7.7 Variable representation and adaptive
strategies

An interesting topic of research is also the extension of the
 idea to the case of discontinuous variable representation.
This would allow, at least in principle, an easier formulation
of h − p adaptive strategies in the  framework.

At present, the only schemes of this type are the ones
proposed by Chou and Shu (2006). Other researchers have
however developed their versions of discontinuous 
schemes, aven though few publications have appeared yet
on the subject (Abgrall, personal communication) (Hubbard,
2007).

Concerning adaptive strategies, we mention the work of
Roe and Nishikawa (2002), allowing a proper adaptation of
the mesh via a least squares minimization of the element
residuals, and the adaptive quadrature proposed in Nishikawa
and Roe (2005a), allowing, through a nonlinear wave detec-
tion mechanism, to avoid nonphysical expansion shocks (see
also the related work of Sermeus and Deconinck, 2005 on
this subject).

7.8 Applications

Engineering applications of  schemes have started
appearing in the most recent years. The use of 
schemes for turbomachinery applications has been shown
in Henriques and Gato (2002, 2004) and (Bonfiglioli
et al., 2005). Even more complex applications including
large eddy simulation (LES) simulations can be found in
Caraeni (2000), and in the references therein by the same
author.

Other industrial applications have started to appear, as for
example in Wu and Bogy (2001), where a  discretization
has been used to discretize the convective term of a mathe-
matical model used in hard disk manufacturing.

In aeronautics, we refer to the works of Edwin van
der Weide and Kurt Sermeus, who developed a 3D
Navier–Stokes solver including Reynolds-averaged
Navier–Stokes (RANS) turbulence modeling for aero-
nautical applications, under the support of the European
Space Agency (ESA) and the European Union 6th Frame-
work Program Industrial demonstration of accurate and
efficient multidimensional upwind and multigrid algorithms
for aerodynamic simulation on unstructured grids (Project
(IDEMAS)). A review of this work is given in Deconinck
et al. (2000). Extension to hypersonic applications with flow

under thermal and chemical nonequilibrium had already
begun in Degrez and van der Weide (1999), with 3D appli-
cations and advanced modeling accomplished over the
last year. Unsteady aeronautical applications on moving
geometries using an arbitrary Lagrangian–Eulerian (ALE)
formulation have been developed in the PhD research
thesis of Dobes (2007) with application to fluid-structure
interaction.

We mention the successful application of the schemes to
the solution of the shallow-water equations (Paillère, Degrez
and Deconinck, 1998; Hubbard and Baines, 1997; Ricchiuto
et al., 2007a). Some of the results of the last reference have
been reported in the results section of this paper. Successful
extension of this work to the computation of flows with dry
areas can be found in Bollermann (2006).

Finally,  techniques have been also applied for magne-
tohydrodynamics simulations in Csík et al. (2001, 2002),
Aslan (1999, 2004).
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