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Abstract

This paper deals with the construction of a class of highmoadeurate Residual Distribution schemes for advection-
diffusion problems. The approximation of the solution is olgdinsing standard Lagrangian finite elements and the
total residual of the problem is constructed taking intocart both the advective and theffdisive terms in order

to discretize with the same scheme both parts of the govgrmguation. To cope with the fact that the normal
component of the gradients of the numerical solution isafiiauous across the faces of the elements, the gradient of
the numerical solution is recovered at each degree of freeafdhe grid and then interpolated with the same shape
functions used for the solution. Linear and non-linear seb®& are constructed and their accuracy is tested with the
discretization of advection-fiuision and anisotropic fiusion problems.
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1. Introduction

In the last years dierent high order schemes have been developed to obtain harlogder (more than two)
discretization of the Navier-Stokes equations. One of thstrattractive scheme seems to be the discontinuous
Galerkin (DG) scheme [1]. Residual Distribution (RD) sclemfR, 3, 4] represent a very interesting alternative to DG
schemes. While computationally compact and probably merédlle, DG schemes fiier from the serious drawback
of a very fast growth of the number of degrees of freedom (D®@iF) the cell polynomial degree. In RD schemes the
formulation remains local, as in DG, but the number of DOFsghs less quickly because the solution is assumed to
be continuous.

RD schemes have been developed mainly for advection pretdesnto possibility to construct multidimensional
upwind schemes which guarantees a small discretization eompared to the standard Finite Volume schemes, but
the discretization of advection{tlision problems with the RD schemes is still an open probleme &f the main
issue concerns the possibility to take into account withengame scheme advective terms, by the means of upwind
mechanism, and fiusive phenomena, which on the other hand have as isotropavhoe. To address this problem
mixed upwindcentral schemes have been developed, in which RD methodeda@dvection terms are combined
with central schemes, usually based on the Galerkin digat&in of the dffusion terms. For such type of schemes
a proper blending between the RD and the Galerkin schemes breusonstructed otherwise the accuracy of the
resulting schemes is spoiled [5]. The approach used in thi& i8 based instead on the construction of a RD method
in which the advection and theftlision are handled within the same scheme. Unfortunatedyititioduce a new
complication because, for polynomial piecewise approxiomeof the solution, the normal component of the gradient
of the numerical solution is discontinuous on the face of &dfacent elements. This would require the introduction
of a numerical flux for the viscous term.

Instead of actually consider a numerical flux along the faifethe elements, as happens in the DG or Finite
Volume schemes, the approach adopted in this work consisecbvering an unique values of the gradient of the
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numerical solutions at each DOF of the grid and these valgethan interpolated with the same continuous functions
used to interpolate the solution. It is evident that gradidrave to be recovered with higher order of accuracy to
construct an high order scheme, so now the crucial pointasstrategy used to recover the gradients at the DOFs.
The problem of the gradient recovery is addressed in thergagether with the construction of accurate and robust,
linear and non-linear RD schemes.

The structure of the paper is as follows. In Section 2, stgrfrom the advection problem, the basic ideas of
the RD methods are introduced. The issues related to theetimation of advection-diusion problems in the RD
framework are discussed in Section 3, while in Section 4 &deed in detail the construction of a class of linear
and non-linear RD schemes. In Section 5 are discussed anpbcedhdiferent strategies for the gradient recovery. In
Section 6 the proposed numerical schemes are extensigtdydten linear and non-linear scalar advectioffiidion
problems and an anisotropidiilision problem is also considered. Finally, in the last sectbme concluding remarks
are given.

2. Basics of theresidual distribution method

In this section the main idea of the RD method for scalar hyplér problems is briefly recalled and the funda-
mental properties of conservation, consistency and acgufahe numerical scheme are also reported. Furthermore,
the notation used through the paper is introduced.

Consider the steady conservation law for the scalar qyantit

V.f(u) =0, (1)

wheref(u) € RY is a given flux function of the unknown(x) € R, x € Q c RY, with d the number of the spatial
dimensions (herd = 2 ord = 3). The Eq. (1) must be supplemented with the proper bountzmgitions on the
inflow portion of the boundaryQ

Uao- =g(s), s€0Q7,

where the functiorg is known, it represents the boundary condition of the pmnmbten the inflow boundary and
0Q~ = {x € 9Q|a- n < 0}, with n the outward normal vector to the boundary of the domain artite advection
velocity defined by
_df
a= W

The domainQ is discretized withNe non-overlapping elements with characteristic lenigthihe set of all the
elements is denoted I8y, the list of the DOFs is denoted iy, and the total number of DOFs M. The solution
is approximated on each elementheth order polynomials which are assumed to be continuousimihe elements
and on the faces of the elements. If the standard Lagrangapesfunctions are used, the approximated solutfon
can be written as

u'(x) = ani(x) U, XeQ,
iexy

with u; the numerical solution at the generic DQF

The approximated solution, in general, will not satisfies gloverning equation, which means that the integral of
the Eq. (1) calculated on each elementsill be not null, but will give rise to a residual on each elathenamely

O = fQ v-f(u"dQ = f(u") - ndoQ.

0Qe

The integral quantityd®(u") is called total residual of the elemeat In order to handle only nodal values, the total
residual is first distributed, in some way, to the DOFs of tleenent as follows

@€ = BE(UMDEW"), Vie P,



whereZy is the list of the DOFs of the elemeatands; are the distribution cd&cients, which can be in general
function ofu". It is easy to see that the following conservation constmaitst be satisfied [6]

Dog=0°, veeé&y

iexy
To obtain an equation for each nodal value of the numeridatisa the following relations are written for each DOF

Do =0, Viez,

eeShJ

where&; is the set of the elements which share the DOFhe previous relations define a set of non-linear equations
that must be solved for nodal values of the solutiafils. n,,. In practice the solution with an RD method is
obtained by the means of an iterative method, which in the@kist form reads

U-n+l _qn
i

St = U, viex, )

At} og

with At a scaled pseudo-time step. The change of the nodal valué® stution during the iterative process is
driven by the non-zero total residuals on the elements) fer o the total residual on each element vanishes and the
steady state solution is obtained.

2.1. Consistency and accuracy

The fundamental properties of consistency and accurady@oschemes have been analyzed by Abgrall and Roe
[6] and are briefly reported here for sake of completeness.

Assuming that a sequenc@ is bounded in_., whenh — 0 ad if existw, such thau" — wwhenh — 0, then
w is a weak solution of (1). In the proof the continuity of theeirpolant across the faces is assumed, although this
constrain may be alleviated and RD schemes with discontimetements can be constructed [7, 8, 9].

To analyze the accuracy of the RD the following truncatiaoeeis introduced, for any smooth functign

W 9) = D elx) Y o,

iexh ecEhj

where®®* is the so-called Galerkin total residubf* = f % V- f(u") dQ. If the solutionu is smooth enough and
Qe
the residuals, computed with the numerical solutibnare such that

®f = O(h*9), 3)
and if the approximatiorfi(u") is accurate with the ordée+ 1, then the truncation error satisfies the following relatio
E(U )l < Clp, f, U)K,

with C a constant which depends onlyenf, andu. It can be shown, under the previous hypothesis ®iat O(hk*?)
and if exists a constari®, such thatd? = p*@®, then the condition (3) is satisfied provided tjg&tis uniformly
bounded. Such a condition is historically called lineapitgserving.

To determine the conditions that must be satisfied by the rnigedescheme in order to have non-oscillatory solu-
tions the distributed residual on a generic elenegstre-written in the following form

OF = > ¢ (U - uy),

jexy
j#



with the coéﬁcientscﬁ. that in general depend on the solution. By applying the REeswh(2) with the previous
definition of the residual one obtains

url _gn _
T: Z Zcﬁ (W -u) VieZh 4)
i ecEh; jEZﬁ
i

If the scheme satisfies the following positivity conditions

Z Zcﬁ >0 and 1- Ati”Zcﬁ- >0, Vi e I,

ecénj jexy jexg
j# j#i

then the solution verifies the following discrete maximurimgiple

min minu? < uf' < maxmaxu?, Vi € I
ecEn; j€Xy ecEni j€Xp

A scheme which satisfy the maximum principle is said to bétes If all the codficientsc;; are independent of the

numerical solution a scheme of the form (4) is said linears iwell know from the Godunov’s theorem [10] that a

linear scheme of the form (4) cannot be simultaneously pesiind linearity preserving, which means that a positive

and high order scheme must be non-linear.

3. Extension to thediffusion terms

When in the governing equation (1)fllisive phenomena are considered together with the advdetives, the
following advection-difusion equation is obtained

V-f(u)y=V-(»Vu) onQcRY d=23 (5)

wherev > 0 is the viscosity, generally function ef The relative importance of the advection and th@&udion
is described by the non-dimensional parameter, Peclet ayrRle= ||a| h/v. In the advection and ffusion limits
Pe— o0, Pe— 0, respectively, while Pe 1 when advection and fllision are equally important.

To extend RD methods to advectiorfidsion problems, diierent strategies have been considered to compute and
to distribute the residual associated with thédiion terms. On a first attempt, based on the physical intuitiat the
diffusion has an isotropic behavior in the space, RD schemekd@dvection terms were coupled with the Galerkin
discretization of the diusion terms [11, 12], but a truncation error analysis rexe&hat this simple approach results
in a first order accurate scheme when advection afidsion have the same order of magnitude [5]. Aatient
approach, which was developed for two-dimensional schamdsgangular grids, considered a hybridization of the
RD method with a Petrov-Galerkin scheme by the means of imggahrameter, function of the Peclet number [13].

A key aspect that emerges from the work of Nishikawa and Rp&s[that a RD scheme with an uniform order
of accuracy in all the range of the Peclet numbers should oosider two diferent distribution schemes for the
advection and diusion terms, but only one distribution process has to beopmed for the residual of the whole
equation, namely

0° = v-f(u") - V-(vVu")) da.
I )

To put the previous expression in term of a boundary integrad has to cope with the fact that the normal component
of the gradient of the numerical solutiomu™- n, is in general discontinuous on the faces of the elementstisd
violates the continuous approximation hypothesis of thmerical scheme. Suppose, now, that an unique value of
the gradient is available at each DOF, the gradients cantbgmiated with the same shape functions used for the
solution and the total residual on the element can be wréttefollows

Q¢ = 9§Qe (M- vﬂ‘) - ndaQ, (6)
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whereVuh is the interpolated gradient of the numerical solution,aliis now continuous on the faces of the elements.

Once the total residual is evaluated, it can be distributetthé DOFs of the elements by the distribution coef-
ficients, 8. This strategy has been adopted in [14] to construct a secaiet RD scheme for advectionfiision
problems on triangular grids an has been extended to theedhder in [15]. In both works the distribution process is
done with purely advective distribution déieients, which is not appropriate in thefdision limit. A more general
scheme consists in using distribution ic@ents which are function of the local Peclet number in otdeecover an
isotropic scheme in the filusion limit and an upwind scheme in the advection limit [5]. 16

The key idea of the Eg. (6) is the reconstruction of the graidi&éthe numerical solution at each DOF of the grid
and is one of the issue analyzed in this work. Indeed, numlexigeriments show that in order to obtain an high order
accurate solutions, the gradients must be recovered wethame order of the solution.

An alternative approach has been proposed by Nishikawaiffirsibn problems [17] and advectionfidision
problems [18], it consists in reinterpreting the advectibfiusion scalar equation as an equivalent hyperbolic first
order system, in this way the gradient recovery is no longeessary, but the price to pay is the increment of the
unknowns of the problem due to the fact that a system of egjusthust be solved instead of a single scalar equation.

3.1. Hyperbolic First Order System formulation

The hyperbolic First Order System (FOS) formulation is hexealled for later convenience. The basic idea
consists in re-writing the advectionftlision scalar problem (5) as an equivalent first order systemitch the second
order derivatives of the original problem are replaced tfitst order derivatives of auxiliary variables. At the stea
state the two formulations will coincide and the value of éluiliary variables will equal the value of the derivatives
of the unknown in the original problem.

Consider the case of a two-dimensional advectidfusdion problem for simplicity, the FOS formulation reads

ap 99
+a-Vu v(a +8y)
op 1 (du
E_T,(ax p) (7)
o9 _ 1 (ou_
at T, \oay

wherep andq are the gradient variables aifigis a relaxation time. At the steady state the system (7) is/atgnt to
the original equation (5), independently of the param&teand p,q become equivalent tgg, 9 respectively. Note
that, diferently form other schemes which use a first order representaf the advection—diy‘usion equation, the
system (7) is hyperbolic. In vector form one has

(;—l:+A-Vu=s, (8)
with
u ax -v O a, 0 -v 0
u=[p[, Ac=|-# 0 0, A={0 0 0| s=|-¢|,
q 0 0 0 -+ 0 0 -3

and where, for an arbitrary vectar= (ny, ny)T, one can write thaf\-n = Axny + Ayny, thus

an  -vnNy -—vhy
T 0 0 9)
£ 0 0

with a, = a- n. The Jacobian matrix (9) is diagonalizable with real eigdumes

1 dy 1 4y
=-la, - \|a2+— == /z i -
A1 Z(a” aﬂ+_|_r), A2 2(an+ an+_|_r), Az =0,

5



and the matrix of the right eigenvectors reads
_/llTr _/lzTr O
Ry =| ny ny —ny|.
ny ny Nx
As usual, the Jacobian matrix can be writtenAgas= R ALy, whereA, is the diagonal matrix of eigenvalues and
L, = R;l is the matrix of the left eigenvectors.
The parametef, can be defined as the ratio of a length sdaléo the fastest wave speed of the system, namely
lanl +v/L; ’
while the length scalé, can be determined in order to ameliorate the formulatiomefdontinuous system; for ex-
ample in [18]L, is chosen such that the magnitude of the biggest and smeidgstvalues are equal, thus minimizing
the stifness of the system.

Since the system of equations (8) is hyperbolic, it can berelized with any scheme already available for hyper-
bolic problems. If a RD scheme is used, the total residual gereeric elemert is defined as follows

(10)

Ty

Of
(") = |@f | = f (A-vu" - s(u") da.
¢ ‘
T
The system is written in conservative form by introducing filax functionf(u) = (fx(u), fy(u)) , such thatA = V,f(u),
axu—vp ayu—vq

*
r

0 T

u
Ww=| - | sw=| O |

where the parametdi* is used instead of the parameTer with

T = b ,
llall +v/L;

so thatT} is constant within the element, this ensure that at the gtstade the relation%( =p and’;—; = g will be
satisfied in the integral sense. The total residual can bewritten as

®° = fg e(V-f(uh) - s(u")dQ

_ . _ h
_Ségef(u) ndoQ fge s(u™) dQ

4. Residual distribution discretization of advection-diffusion problems

In the previous sections the distribution process of thel tasidual is expressed through the use of generic
distribution codficients, in this section is described how actually perforis step.

In the past years ffierent RD schemes were developed with the objective to amtsipwind schemes for linear
triangulaytetrahedral elements, however the way how these schemedsecextended to élierent elements ayor
different orders is still not obvious [3, 4]. In this work, theeattion is focused on the construction of central schemes
which can be formulated on every type of element and whichbeaaasily extended to high order approximations.
Linear and non-linear schemes are considered.



4.1. Central linear and non-linear RD schemes
4.1.1. Linear scheme
The linear scheme proposed in this work is the extensionddrttegral formulation of the classical Ni's Lax-
Wendrdf scheme [19], namely
e
[0}

I = e
Ndof

+ fa-Vz,bi T (a- vu' - V-(vVuh)) dQ, (112)
Qe

where the scaling parameteis defined as follows
= 1 |26l
2 ) max(;,0)

jexy

, 1_
with  k; = > &,

and wherearepresents the arithmetic average of the advection vglonithe element and the vectoyis defined as

njzf Vy; dQ.
Qe

The scheme (11) is linearity preserving but not positivel, dne to the integral formulation, it is valid for any type of
element and for any order of approximation.

The scheme is conservative sinEeEzﬁ ®F = @, due to the fact thaEiezﬁ Vy; = 0. The scheme is consistent.
When the exact solution is injected in the Eq. (11) the redithzero because the total residual vanishes, by definition
and the integral term vanishes as well due to the fact thatettme between the brackets is exactly the governing
equation.

4.1.2. Non-linear scheme

Non-linear schemes are needed to combine the non-ospjilaghavior of the numerical solution with the high
order discretization. The basic idea to construct a nogalirscheme is to start with a first order, positive scheme, and
to map its distributed residuals onto a set of positive andlireear residuals.

To see in practice how to construct of a non-linear schenresider the first order accurate and positive Rusanov’s
scheme (also know as Lax-Friedrichs schénaefined as

o) 1 .
oF = e + NG aZ(ui - uj), Vie Xy,
dof dof jexg

j#
with a > MaXjese lkjl + v > 0. Since the Rusanov’s scheme is first order accurate, iisbdion codficients 37 =
®F/®°, are unbounded. The construction of the non-linear schemsists in mapping the distribution deients of
the low order scheme onto non-linear bounded distributﬁmmientsﬁie, this process is generally called limitation.
A common choice for the map is the following [2]

~  maxp’,0)
L Z max(3¢, O).

jexy

The use of a central scheme, like the Rusanov’s scheme, ibination with the limiting technique produces un-
damped spurious modes and a poor iterative convergence &ighdy state solution [20]. The cure to this problem
consists in adding a filtering term by means of a streamlisgipiation term

@ = B2 + AU fg (a-Vyi - V-(Vy)) (@ VU - V- (V")) dC2. (12)

10ther low order, non oscillatory schemes can considerkel fdir example a Finite Volume scheme written as RD scheme.
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The role of the parameteﬁ(uh) is double. It provides the correct scaling of the streaenfiltering and it makes sure
that the filtering term is added only in the smooth region$efdolution. The following definition is used here

Z|§-nj| +v)

jexp
‘N Uh =& Uh e
) = o) | =

with £(u") a smoothness sensor.

4.2. Improved discretization of theffiision terms

Numerical experiments reveal that the schemes (11) andgfgljed to the discretization of the advection-
diffusion problem are unsatisfactory from the point of view af #tcuracy and the robustness. In order to obtain
a better discretization of theftlisive terms, the advectionftlision equation (5) is written in the form of a first order
system as follows

fU) -V =
{V (W-V-(vg=0 (13)

g-VvVu=0

Consider now a numerical scheme for the previous systeningotdy writing the weak form of the system plus a
streamline stabilization term, with an abuse of notatigmassible to write

L e T R R

whereA = (A, Ay) with

ay —-v O ag 0 -v
Ac=|-1 0 ol and A,=|0 0 of,
0 0 O -1 0 O
so that ou o
v oY
a:l//' ox oy
| %
A-Vyi o 0 0
O
-—— 0 0
oy

Ta 0 0
T=|0 79 0],
0 0 14

wherer, andry strictly positive coéficients.
Supposing, now, that gradient of the numerical solution lteen recovered at each DOF, one can replace the

second equation of the system (13) with the approxima€iah ~ VU and consider only the first equation, which
now reads

Lon(w-t6r - vom)a + [ v favid - (7)o
(15)
+ f"v‘/’i + (ra (VU" - VUP)) dO2 = 0.
Qe

The first two integrals of the previous equation represeig@etization for the scalar advectionfdision equation
by the means of a central scheme plus a streamline stalihizgtm, in the same way as shown in the Eq. (11). The

8



last integral represents an additional stabilization teionthe difusive part only, which vanishes in the advective
limit and the parametery is dimensionless. It is interesting to note that the addéiderm penalizes the fiierence
between the discontinuous and the interpolated gradientsach element.

With a slightly diferent procedure, a similar stabilization term for th@udiive part has been obtain by Nishikawa
[21] for the RD discretization of the flusion problem.

With the Eq. (15) in mind, it is proposed here a modificatiothaf schemes (11) and (12), previously introduced,
in order to include the extra stabilization term for th&ulive part of the equation. In practice, the liner schemdsea

e ° h h
Of = 1o + 1(PE) | avy, (a- vu" - v-(vvu") d
dof Qe (16)
+(1-1(P€)) f vy - (V" - vuh) de,
Qe

while the non-linear scheme becomes

@ = BEO° + T(PE) (UM f (a-Vyi - V-(rW)) (@ VU = V-(vWu")) dQ
Q
‘ ~ 17)
+(1-1(P€)) f vy - (VU - vuh) de,
Qe

where it has been introduced the local Peclet number, dedi&a= ||al| h®/v, with h® the characteristic length size
of the elemeng, the functionT(P¢€) is defined such thdr(Pe€) — 0 in the difusive limit andY(P€) — 1 in the
advective limit. In the numerical simulations the followidefinition is used

1
T(P&) = max(O 1- Pee)

Note that in the schemes (16) or (17), the use of the blendingtionY'(P€), makes possible to recover, in the case
of the pure advection, the same scheme used for the distietizof pure advective problems, while in the case of
pure difusion problems only the stabilization term for th&dsive terms is taken into account.

4.3. Discretization of the hyperbolic first order system
The schemes introduced for the scalar advectidiusipn problem can be easily extended to case of a system of
equations meaning that the discretization of the hypecttellS is straightforward, with a simplification: there are no
diffusive terms. The construction of non-linear scheme for Hyglee system of equation has been analyzed in [20],
while the linear scheme for a system of equations reads
q)e
®f = fA-Vzpi E(A-Vu"-s)dQ,
Q,

e
NdOf e

where the scaling matri is defined as follows

E= IQeI

. 1
Z K*] . with Kf = SRy A Lay,

jexy

where the operatoﬂ;+ selects only the positive eigenvalues and sets to zero thegines ones.

Respect to the orlglnal work of Nishikawa, where only strboegndary conditions are considered for the solution
and its gradient, here the boundary conditions are impaosaevieak sense as typical done for advection problems, like
the compressible Euler equations for example. The totaweskis first computed without considering the boundary
contributions, then a correction residual is added to ctigréake into account the boundary conditions. For a riode
belonging to the boundary, the residual associated to thadary conditions can be written as [22]

®¢, = f . yi(f(u”) - F(u")) - ndoQ,

0QeU0Q

9



whereu? is the state that has to be imposed on the boundary and the?(uﬂ,f’r)rk f(u") is a correction flux which
vanishes when the solution on the boundary equals thewétate this work the correction flux is taken as follows

f(u?) - f(u") = AL UM (? - u"),

with A7 (u) = Ry(u) A;(u) Lp(u). Note that this correction flux corresponds to the clasdtiamann flux used to
impose the ifout flow boundary conditions for hyperbolic problems. Thawboundary conditions have been found
to be more &ective that the strong boundary conditions since the iterabnvergence to the steady state solution is
much faster.

4.4, Implementation details

From a numerical point of view, the total residual is compluig the means of quadrature formulas, for example
Eq. (6) is approximated as

|
Nquad

Of ~ Z Z (f(uq) - vq%q) - Ny wy

lere | g=1

%l

wherel® is the set of the faces of the eIemeBx:N;uad andw'q are, respectively, the number and the weights of the

guadrature points on theh face,n'q is the outward normal versor to the face 4!.0[{1! is the determinant of the Jacobian
of the transformation from the reference element to the ishyglement. In the two-dimensional simulations con-
sidered in this work, two and three Gauss points are usedanfaee of linear and quadratic elements, respectively.
Also the stabilization terms are numerically computed bpgisjuadrature formulas; the number of the quadrature
points depends on the kind of element considered, and is taleh that the functions are integrated exactly.

The explicit Euler scheme is used to iterate the scalar nigalescheme at the steady state using a local time
stepping, the scaled time step is chooses as follows

CFL
AL = ,

Z maxk{| +v
jexy

eE(Shvi

where CFL< 1 is a safety parameter. The same definition is used alsoddmtperbolic FOS, where instead of the
parametek; the maximum value of the eigenvalues is used.

In numerical experiments, it has been observed that the dridér discretization of the hyperbolic FOS con-
verges very slowly to the steady state, making the use of &céxgcheme almost impossible. For this reasons,
when quadratic elements are used, an implicit Euler scheraeployed in combination with the pseudo-transient
continuation strategy for which the local time step is defiae follows

A = CFL"
i - )
Z (max|krj‘| + v)

forl Jezﬁ

with the CFL law taken as )
R .

crLn = crolR e i cRL0 < 1,

IR1| 2

where||[R™ |- and||[R™2||.- are theL? norms of the residual at the time staps 1 andn — 2, respectively. In the

simulation CFL° is takes as ® and the maximum value of CFL is limited to ®.0The implicit problem is solved by

the means of the inexact Newton-Krylov method and the GMRIgSrithm with the ILU preconditioner is used to
solve the resulting linear systems.
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5. Gradient recovery strategies

As explained in Section 3, in order to construct the totailes for the whole advection-flusion equation one
has to assume that a continuous value of the gradient of therical solution is available on the faces of the elements.
The strategy adopted in this work to obtain a continuous@ppration of gradient consists in recovering the gradients
at every DOF of the grid and then the nodal values of gradi@rsnterpolated with Lagrangian functions on each
element.

The key point is the recovery of the gradients at the DOF,Hix teason are here recalled some of the most used
techniques in the field of the gradient recovery. Attentefocused on the possibility to obtain an high order gradient
recoveryge.g, the gradient is recovered with the same order of accurattyecfolution. For simplicity, the description
is always limited to the two-dimensional case, but the esitanto the three spatial dimensions is straightforward.

5.1. Theory
5.1.1. Area-weighted method

One of the easiest way to recover the gradient at the gridnisdbe area-weight average of the gradients in each
element surrounding a node, namely

> vu(x) 1Qd
EGSh\i

%i = VI € Zh,

dled

eE(Shvi

where|Qg| is the area of the elemeat The previous relation, in the case of linear elements isthealled Green-
Gauss formula.

5.1.2. L2-Projection

In the L2-Projection, the reconstructed gradients areinettby solving the following equivalendau” = vahin
a weak sense

f YV dQ = f VU dQ, Yy e W (18)
Q Q

From a numerical point of view, the weight functignis taken in the finite dimensional space of the Lagrangian
functions. The gradient is expressed as follows

v = Z AT
jexy

Whereﬁfj is the recovered gradient at the generic DOH the following vectors of unknowns are defined, for the
components of the gradient

[au au

E

than the discrete solution of the problem (18) can be obddiyesolving the following linear systems

Xg =

b}

and yﬁz[

J 4 j=1,Naor J 4j=1,Ngot

Mxy = by and My, = by,

with o .

ou ou
Mii = i dQ = i — dQ = i — dQ
ij \fg;ij 'ﬁl'ﬁ] dQ, bx. o Ui ox d@, and by. o Ui 6y do,

whereQ); is the support of the shape functignandQ;; = Q; N Q;. The gradienWu" is computed by resorting the
gradient of the shape functions, as standard practice iRitliee Element field.

This technique requires the inversion of a global lineatesysthat can be quite expensive for a high number of
unknowns. Obliviously, since the matrM depends only on the geometry of the grid, it can be invertdg amce
and can be used for several calculations on the same grid.
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5.1.3. Least-square method

Another approach to recover the gradient at each DOF of ideégthe least-square reconstruction. The technique
is unrelated to the mesh topology and it involves only therimfation associated to the neighboring nodes. Although
the stencil is arbitrary, the natural choice involves ohly hearest neighboring nodes.

The starting point consists in expanding the solution inyddreseries around the nodléor each nodg belonging
to the stencil of, see Fig. 1,

ou
uj = Ui+ 3_)(’. (Xj — %) + _' i —y)+

P
X2,

2 (29)

(X — X)) + (yj - i) + (Muy (X =x)(yj =) +...,

0°u
6y2

whereu; = u(x;) andu; = u(x;). The gradient reconstruction is obtained by solving far ¥hlues of the gradients
that minimize the following function
N
D REE,  Viex,
=1

with
ou ou
E|2] = (—AUij+ 6_)('| AXij + a—y’I Ayij+
ol , o 62 2
—| AX: + — A A AYi

whereAu;; = uj — Ui, AXj = Xj — Xi, AYij = yj — ¥, while wj; is a weights factor. In the case of linear elements,
the solution is expanded only up to the first derivatives i Taylor series and the components of the gradient are
obtained by solving the following minimization problems fhe first derivatives

[ A

ST

By simple algebra, it is easy to see that the previous mirdtitn problems correspond to the solution of following
Z Z wiszXiAyij 6_)( i

small linear system
N
Z wizj AX@jAUij
j=1 =1

N N .
Z 2 A% Ayij Zw,JAy2 au D wfAyiAug
=1 ayl; =t
The weight factor;; is generally taken as the inverse of the distance betweemnithes and j.
The extension to the case of quadratic elements is straigbafd, it consist in taking also the second derivatives
in the Taylor series and the minimization is done respedt bt and second derivatives.

N N au'

5.1.4. Super-convergent patch recovery

In the field of the Finite Element method applied to the meatsstructures it is know that the stresses (gradients
of the displacements) sampled at certain points in a elepegdess a super-convergent property, that means that the
stresses have the same order of accuracy of the displacef@8it It can be shown that in the case of a segment
element such particular points correspond to the Gaussrldrg points [24], obviously by tensor product such points
can be defined also in the case of quadrangles and hexahehamisiangles or tetrahedrons such property cannot

12



@ (b)

Figure 1: lllustration of the stencil for least square geatlirecovery at the node The symbol §) indicates the node around which the Taylor
series expansion is done while the symbe)sifdicate the node used to construct the least square pnolda the left stencil with linear elements,
on the right stencil with quadratic elements for a nodes erfahe.

be rigorously shown, but numerical experiments confirm thaistresses sampled at certain points have high order of
accuracy.

Accepting the fact that gradients are sampled with high madeuracy in certain points of the element, it is
possible to compute gradients which are high order accwiditén all the element. Indeed, if at sampling points the
value of gradients is accurate to ordter 1, by using a polynomial of degrdgthe same order used to interpolate the
solution) it is possible to obtain an approximation whicls lhégh order accuracy everywhere within the elements if
this polynomial is made to fit the values of the sampled gradin a least square manner. Such a technique is call
super-convergent patch recovery introduced by Zienkizaiad Zhu (SPR-ZZ) [25, 26].

Assume that the numerical solutiof of the problem is known at each DOF of the grid to #d-th order of
accuracy. The aim is to obtain the values of the solutionigragvu” at all the DOFs with same order of accuracy
of the solution. The components of the recovered gradi¢titeageneric DOR, are written in a polynomial form as
follows . y

ouh| ouh|
x| ay and oy | p ay,

I
with
PT(X) = (L, %Y, %, ..., X0 Xy oy,
ay = (8, 8, .- -, 8x,) and a = (ay,,ay,,...,ay,).

Assuming thatNs sampling points, X;,y;),j = 1...Ns, are available for each nodgincludingi itself), the
objective is to minimize the following functions

~ S (oun - d ~ & (oun -
Fx= D G0 — Aa) and Fy= > |00 - Py,

k=1 X

with p, = p(x«). The vectors of the cdkcientsay anday are obtained by solving the following minimization problem

oF
Fx_o and oo
0ay o0ay

It is easy to verify that the minimization problems corresgdo the solution of the following linear systems
ATAa, = ATbf, and ATAa, = ATh), (20)
13



where

aun oun

— (X —(X

6):]( ) 6);( ) 1 % yr ... Y&t

ou ou )
= ax 2| o D and ac|t e Y2 v
X — s y — - 1. . .

au oul 1 X YN ... Y

W(XN) 3_y(XN)

To compute the cdicientsa, and ay, a small linear system must be solved for each DOF of the gridse
dimension of the matriX are determined by the number of sampling poiity @nd by the degree of the polynomials
used to express the recovered gradient, thAtésRN<™, wherem is the number of the cdicients in the vectoay
or a,. The problems in the Eq. (20) admit an unique solution if Rk m, which is always satisfied in the case in
which Ns > m. It is worth also noticing that since the matéixdepends only on the geometry, for a given grids the
matrix (ATA)"*AT needs to be computed only once.

Generally, the number of elements which share the same nitlia the domain is such that the conditiblg > m
is always satisfied, this means that the gradient recovergrigpact because it involves only the elements contained
within the support of a grid node. For the nodes belongindnéolioundary of the grid the conditiddy > m might
not be satisfied without enlarging the stencil, otherwigeptfoblem is ill conditioned. In this case, to avoid the use of
larger stencil for a boundary node it is possible to obtagnvilue of the recovered gradient with the same polynomial
expansion used for nearest domain node.

In Fig. 2 are shown examples of patches used to recover thegtdor a domain node in the case of quadrangular
and triangular elements.

O

(c) Nine nodes quadrangles (d) Six nodes triangles

Figure 2: Interior super-convergent patches for quaeriddtand triangular elements: top linear elements, bottoauatic elements. The symbols
(o) indicate the patch assembly points, the symbe)srdicate the points where the gradient is recovered andythwols {) indicate the super-
convergent sampling points.

For a quadrangle the sampling points are defined uniquelysi@ering a reference segment defined ag -1, 1],
the sampling point is the point = 0 in the case of a linear element, while in the case of a quadstgment the

14



sampling points have coordinate$/ V3. The sampling points on the reference quadrangle are wiomphined by a
tonsorial product of the points defined on the reference segm

For a linear triangle, the sampling point is the point withylmantric coordinated = (1/3,1/3, 1/3), while in the
case of a quadratic triangle the sampling points are nougndfferent choices are available. In Fig. 3 are shown three
examples of sampling points used. In the first option (Fi¢a)3-are used three points with barycentric coordinates

211 121 112
/11—(5,5,5), /12—(5,5,5), and /13—(5»5*5)’

In the second option (Figure 3-(b)) four points are used Witycentric coordinates

111
11:(5,5,5), 1 =(06,02,02), A3=(02,06,02), As=(0.20.20.6).

Another option (Fig. 3-(c)) consists in taking as sampliogps the three points with barycentric coordinates

11 11 11
w320 a=(old) w=(3lo)

@ (b) ©

Figure 3: Three dferent examples of sampling points for quadratic triangles.

5.2. Results and discussion
To study the accuracy of the presented gradient recoveategies the following function is used

1- V1i+ 167r2v2)]
2v ’

u = —cos(2m) exp[f( (21)

with = ayx — axy andé = ayx + a,. Hereax = 0.5,a, = V3/2 andv = 0.01. The solution, shown in Fig. 4, is
infinitely differentiable with continuous gradients. The computatiots@fecovered gradients are performed on four
different kind of grids, shown in Fig. 5, namely unstructuredgunf triangles, quadrangles and hybrid elements and
highly deformed unstructured meshes of triangles, obtiiardomly perturbing a regular grid.

__ The error of the recovery procedure is computed a4 theorm of the diference between the computed gradient,
Vu, and the exact gradierffue, for each spatial component, namely

| (70 vuo) a0
fﬂ (Vuex)2 do

Table. 1 shows th&? errors and the orders of convergence dfatient gradient recovery methods on triangular
grids. In the case of linear elements, thatiences between the recovery methods is small and all teesshreach
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Figure 4: Graphical representation of the Eq. (21) usedstiothe gradient recovery methods.

almost the second order accuracy. The L2-Projection an&®ie-ZZ methods have the smallest level of error, but
the former scheme is much more expensive because it redn@aslution of a global linear system. In the case of
guadratic elements, the methods have an order of accuramon®than two except for the SPR-ZZ method which

show almost third order accuracy, it is also worth noticingttthe errors obtained with this method are one order of
magnitude smaller of those obtained with other methodsabi€l 2 are reported the errors obtained with the SPR-Z2Z
procedure on quadratic triangular elements for the thrferdint sampling strategies shown in Fig. 3. It is evident
that the first strategy guaranties the smallest level ofrawbile the four-points strategy is unsatisfactory.

The errors of the recovery methods on unstructured gridsiaficangles and of hybrid elements are reported in
Table. 3 and Table. 4, respectively. The behavior of thevexgamethods is the same observed in the case of triangular
grids. Table. 5 shows the errors computed on a sequenceldf/ figtorted triangular grids, the performance of the
recovery methods is not optimal anymore due to very poolityuzlthe meshes, nevertheless the errors obtained with
the SPR-ZZ methods are always much smaller than those ebtaiith other procedures.

6. Numerical experiments

The section presents an extensive evaluation of the nuatedhemes proposed. The objective is to show that the
high order RD schemes, previously proposed, can be suatlgssfed in the discretization of the advectiordsion
equation and the high order accuracy is preserved in allathge of the Peclet number.

In all the simulations, the steady state is considered toehehred when the? norm of the initial residual is
reduced by ten orders of magnitude. If the residual of thesehstagnates at a high level, it is marked that the
simulation is not converged. The CFL number is taken.8s28d 06, respectively for the linear and the non-linear
schemes. The same kind of grids shown in Fig. 5 are considethd numerical simulations.

6.1. Linear advection-giusion equation

To verify the order of accuracy of the linear and non-linezliesnes, as well as to study the influence of the
accuracy of the gradient recovery methods on the accurattyeaiumerical solution, the linear advectiorfdsion
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Figure 5: Example of diierent kinds of grid used to test the accuracy of the gradesuvery procedures.

problem with constant viscosity is considered here, namely
a-Vu=yV.Vu, on Q=012

the exact solution of the problem reads

£(1- Vi+ 167r2v2)]
2v ’

u = —cos(2m) exp[

with n = a,x — axy and¢ = axx + a,y. Herea = (0,1)" andv = 0.01, which is the most critical case because the
advection and the ffusion have similar orders of magnitude and traditional ligter RD schemes generally loose
an order of accuracy in this regime.
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Linear elements Quadratic elements

Naot ELz(%) OLz ELz(g—;) OLz Ndof ELz(%) OLz ELz(g—;) OLz
Weight area method
121 10975E-01 -  10897E-01 - 445 13080E-02 -  13759E-02 -
445 33359E-02 182 33068E-02 183 1705 3B057E-03 204 33930E-03 208
1705 34930E-03 169 10426E-02 171 6673 8&905E-04 202 84921E-04 203
6673 34930E-03 163 33586E-03 166 26401 2742E-04 201 21236E-04 201
26401 11731E-03 158 11113E-03 160 105025 B5I867E-05 200 53098E-05 200
L2-Projection method
121 50516E-02 -  51481E-02 - 445 12060E-02 -  12919E-02 -
445 15242E-02 184 15304E-02 186 1705 31774E-03 198 33011E-03 203
1705 49228E-03 168 46513E-03 177 6673 8l008E-04 200 83931E-04 200
6673 16229E-03 162 14693E-03 168 26401 20396E-04 200 21117E-04 200
26401 54714E-04 158 47817E-04 163 105025 B5l127E-05 200 52928E-05 200
Least square method
121 11118E-01 -  11439E-01 - 445 2491E-02 -  21644E-02 -
445 34550E-02 179 35113E-02 181 1705 55271E-03 202 55544E-03 202
1705 11077E-02 169 11302E-02 168 6673 14080E-03 200 14132E-03 200
6673 36764E-03 161 37633E-03 161 26401 HB574E-04 200 35684E-04 200
26401 12555E-03 156 12850E-03 156 105025 ®450E-05 200 89698E-05 200
SPR-ZZ method
121 84433E-02 -  88633E-02 - 445 H4353E-03 -  53235E-03 -
445 23072E-02 199 23798E-02 201 1705 71348E-04 302 69027E-04 304
1705 60986E-03 198 63714E-03 196 6673 9508E-05 294 10076E-04 282
6673 15872E-03 197 16841E-03 195 26401 13631E-05 283 16522E-05 262
26401 41512E-04 195 45107E-04 191 105025 22311E-06 262 30462E-06 244

Table 1: Accuracy study of fierent gradient recovery methods with linear and quadréiments on an unstructured grids of triangles.

On the left, right and bottom boundaries of the domain thees@alution is imposed as Dirichlet boundary condi-
tion while on the top boundary nothing is done. The solutsinitialized with a zero value everywhere in the domain
except on the inflow boundaries where the exact solution Bad.

In Table. 6 are reported thef errors of the numerical solution obtained on a sequencéanfgular grids with the
linear scheme (16) and the non-linear one (17), féedent gradient recovery strategies; linear and quadraticents
are considered. For sake of completeness, in Fig. 6 and ir7[Fthe errors of the solution are shown together with
the errors of the gradients of the numerical solution, ferlthear and quadratic approximation, respectively. In the
case of linear elements, the accuracy of the schemes \idreatit gradient recovery methods is almost identical, for
both linear and non-linear schemes. This is in accordanitetixé accuracy results observed for théetent gradient
recovery techniques and it underlines also the fact thdt bagt of the L2-projection method is not justified, since
less expensive methods produce results with the same lesetoracy.

The situation is very dierent in the case of quadratic elements, the weighted ackthan 2-Projection gradient
recovery methods produces a sub-optimal scheme with sexrdied only accurate solutions for both linear and non-
linear schemes. The use of the SPR-ZZ method allows thercatish of an optimal third order accurate scheme
and it is worth noticing that also thecomponent of the gradient of the numerical solutions igdtbrder accurate,
meaning that solution and gradients are computed with theesarder of accuracy. On thecomponent of the
gradient this optimal behavior is lost, and this due to thmlsimed dfects of the gradient recovery with the solution
error on the outflow boundary, where no boundary conditiamgosed. An optimal accuracy on both the components
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au du
Ndof GLZ(E() OLZ ELZ(W) OLZ

Sampling points Fig. 3-(a)

445 54353E-03 -  53235E-03 -
1705 71348E-04 302 69027E-04 304
6673 95508E-05 294 10076E-04 282

26401 13631E-05 283 16522E-05 262
105025 22311E-06 262 30462E-06 244

Sampling points Fig. 3-(b)

445 154270E-03 -  59338E-03 -
1705 74236E-04 296 7.6624E-04 304
6673 11574E-04 272 12145E-04 269

26401 21052E-05 247 22411E-05 245
105025 44137E-06 226 46939E-06 226

Sampling points Fig. 3-(c)

445 74535E-03 -  78030E-03 -
1705 15611E-03 232 15747E-03 238
6673 37352E-04 209 37461E-04 210

26401 92406E-05 203 92623E-05 203
105025 23049E-05 201 23110E-05 201

Table 2: Accuracy study of SPR-ZZ recovery methods with gaigcltriangular elements for fierent sampling strategies.

of the gradient has been observed in numerical simulatibttsedinear advection-diusion problem with Dirichlet
boundary conditions imposed on all the boundaries of theadiom

Itis worth noticing that the combination of the non-lineelneme with the least square gradient recovery technique
produce an almost optimal scheme although the least sgeeoeary does not allow a high order gradient recovery,
by itself.

In Fig. 8 are reported the errors of the solution and of grademponents obtained discretizing the linear
advection-difusion problem on a sequence of unstructured grid of quateangth the linear and the non linear
schemes. For simplicity, only the weighted area and the BPRecovery strategies are used. As previously ob-
served, with linear elements there is no significarfedénce in the level of accuracy betweeffatient gradient
recovery techniques, however with quadratic elements th@\SPR-ZZ gradient recovery guarantees third order ac-
curate solutions. Of course, the same considerations dwrtedngular and quadrangular grids are still valid with
mesh with hybrid elements, as it is evident from Fig. 9.

In Fig. 10 are reported the errors obtained on a sequencglolfyhdistorted triangular grids. The behavior of the
schemes is similar to that observed with more regular meghparticular it is important to note that the poor quality
of the grids has only a limited influence on the accuracy ofttleeme.

In order to highlight the fectiveness of higher order schemes respect to the secoadsafiemes, in Fig. 11 the
discretization errors of the solution is reported versesrthmber of DOF and versus the CPU time, for brevity only
results for the linear scheme on triangular grids are sh@we can see that to get a fixed level of error, let’s say,10
an actual third order scheme requires about 12 000 DOFs amii2fies to perform the computation. A second order
scheme, on the other hand, requires about 31 000 DOFs and&thaet the same level of error.

The dfect of the stabilization term obtained for the viscous paly @ now investigate, this means that the linear
scheme (16) is compared against the scheme (11) and thensan-scheme (17) is compared against the scheme
(12). The comparison is done in term of solution accuracy rmndber of iterations necessary to reach the steady
state, results are reported in Table. 7 for the linear andlinear schemes, with the SPR-ZZ recovery strategy.

It can be observed that in the case of linear elements there &ppreciable dierence in term of error between
the schemes with and without the stabilization term for tlseaus part, however the use of the extra stabilization

19



Linear elements

Quadratic elements

Ndof ELZ(%) OLZ ELz(g—;) OLZ Nof ELZ(%) OLZ ELz(g—;) OLZ
Area-weighted method
161 11622E-01 -  11622E-01 - 609 14231E-02 -  14231E-02 -
609 41579E-02 154 41579E-02 154 2369 3B478E-03 192 38466E-03 192
2369 14578E-02 154 14578E-02 154 9345 90279E-04 197 99259E-04 197
9345 51225E-03 152 51225E-03 152 37121 H085E-04 199 25077E-04 199
37121 18163E-03 150 18163E-03 150 147969 @&989E-05 199 63005E-05 199
L2-Projection method
161 72457E-02 -  72518E-02 - 609 13449E-02 -  13450E-02 -
609 24297E-02 164 24294E-02 164 2369 37505E-03 188 37494E-03 188
2369 83236E-03 157 83219E-03 157 9345 9B082E-04 195 98061E-04 195
9345 29137E-03 152 29127E-03 152 37121 24934E-04 198 24926E-04 198
37121 10347E-03 150 10348E-03 150 147969 @&779E-05 199 62795E-05 199
Least square method
161 13633E-01 -  13637E-01 - 609 26082E-02 -  26079E-02 -
609 47439E-02 158 47447E-02 158 2369 T74721E-03 184 T74714E-03 184
2369 16228E-02 157 16230E-02 157 9345 20099E-03 191 20098E-03 191
9345 56064E-03 154 56075E-03 154 37121 =2236E-04 195 5K2234E-04 195
37121 19627E-03 152 19639E-03 152 147969 13337E-04 197 13338E-04 197
SPR-ZZ method
161 97619E-02 -  98311E-02 - 609 81674E-03 -  77270E-03 -
609 28909E-02 182 29355E-02 181 2369 11836E-03 284 10615E-03 292
2369 80600E-03 188 82330E-03 187 9345 16668E-04 285 14853E-04 286
9345 21776E-03 190 22368E-03 189 37121 24586E-05 277 22862E-05 271
37121 58661E-04 190 60921E-04 188 147969 P349E-06 265 39367E-06 254

Table 3: Accuracy study of fierent gradient recovery methods with linear and quadré&iments on unstructured grids of quadrangles.
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Linear elements

Quadratic elements

Ndof ELZ(%) OLZ ELz(g—;) OLZ Nof ELZ(%) OLZ ELz(g—;) OLZ
Area-eight method
145 10519E-01 -  10224E-01 - 537 M1979E-02 -  10599E-02 -
537 36515E-02 161 35170E-02 163 2065 30023E-03 205 26539E-03 205
2065 12803E-02 155 12096E-02 158 8097 TH087E-04 202 66523E-04 202
8097 45569E-03 151 42160E-03 154 32065 18781E-04 201 16676E-04 201
32065 16339E-03 149 14892E-03 151 127617 4H979E-05 200 41802E-05 200
L2-Projection method
145 157084E-02 -  56470E-02 - 537 M11359E-02 -  Q9277E-03 -
537 19731E-02 162 18967E-02 166 2065 29510E-03 200 25757E-03 200
2065 70127E-03 153 65880E-03 157 8097 T4762E-04 200 65536E-04 200
8097 25098E-03 150 23406E-03 151 32065 18782E-04 200 16525E-04 200
32065 89975E-04 149 84536E-04 147 127617 4051E-05 200 41526E-05 199
Least square method
145 11929E-01 -  11876E-01 - 537 26667E-02 -  25865E-02 -
537 40448E-02 165 39400E-02 168 2065 69724E-03 199 67340E-03 199
2065 13998E-02 157 13209E-02 162 8097 17803E-03 199 17159E-03 200
8097 49438E-03 152 45149E-03 157 32065 M990E-04 199 43311E-04 200
32065 17645E-03 149 15651E-03 153 127617 1U312E-04 199 10882E-04 200
SPR-ZZ method
145 Q96638E-02 —  98379E-02 - 537 64044E-03 -  64498E-03 -
537 26738E-02 196 27800E-02 193 2065 T75425E-04 317 77823E-04 314
2065 71713E-03 195 75887E-03 192 8097 9B905E-05 304 10152E-04 298
8097 19172E-03 193 21056E-03 187 32065 12106E-05 297 14363E-05 284
32065 52340E-04 188 62033E-04 177 127617 1B442E-06 289 23277E-06 263

Table 4: Accuracy study of tferent gradient recovery methods with linear and quadré&iments on unstructured gird of hybrid elements.
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Linear elements

Quadratic elements

Ndof ELZ(%) OLZ ELz(g—;) OLZ Nof ELZ(%) OLZ ELz(g—;) OLZ
Area-weight method
100 15099E-01 -  15831E-01 - 361 21328E-02 -  21378E-02 -
400 H9938E-02 133 5K8605E-02 143 1521 46960E-03 210 46263E-03 212
1600 25378E-02 123 25280E-02 121 6241 11617E-03 197 11524E-03 196
6400 12137E-02 106 12166E-02 105 25281 2B337E-04 201 28503E-04 199
25600 58774E-03 104 58834E-03 104 101761 TMW826E-05 199 7.0851E-05 199
L2-Projection method
100 11073E-01 -  13521E-01 - 361 20140E-02 -  19525E-02 -
400 48807E-02 118 47151E-02 151 1521 44031E-03 211 43299E-03 209
1600 22941E-02 108 22636E-02 105 6241 11006E-03 196 10973E-03 194
6400 11033E-02 105 11063E-02 103 25281 26991E-04 200 27079E-04 200
25600 54536E-03 101 54169E-03 103 101761 67489E-05 199 67541E-05 199
Least square method
100 14866E-01 -  16051E-01 - 361 26039E-02 -  24206E-02 -
400 62229E-02 125 60907E-02 139 1521 56536E-03 212 55516E-03 204
1600 26399E-02 123 26598E-02 119 6241 13839E-03 199 14008E-03 195
6400 12727E-02 105 12705E-02 106 25281 A358E-04 199 34027E-04 202
25600 61601E-03 104 61656E-03 104 101761 &O056E-05 200 85298E-05 198
SPR-ZZ method
100 12067E-01 -  10941E-01 - 361 P2841E-03 -  92301E-03 -
400 36082E-02 174 35954E-02 160 1521 15749E-03 246 16616E-03 238
1600 13254E-02 144 13860E-02 137 6241 29877E-04 235 30668E-04 239
6400 58825E-03 117 59665E-03 121 25281 473E-05 217 66083E-05 219
25600 28443E-03 104 28716E-03 105 101761 1B236E-05 209 15454E-05 208

Table 5: Accuracy study of fierent gradient recovery methods with linear and quadréiments on grids of randomly distrorted triangles.
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Linear elements Quadratic elements
Ngof €2 (Uh) 02 €2 (Uh) Oz Nyof €2 (Uh) O,» €2 (Uh) Oz

linear scheme non-linear scheme linear scheme non-lichanse

Area-weight method

43 12149E-01 - 30392E- 01 - 149 11002E-02 - 27329E- 02 -
121 30269E-02 268 69542E-02 285 445 30503E-03 234 7.0412E-03 247
445 74341E-03 215 17157E-02 214 1705 83842E-04 192 16639E-03 214

1705 23405E-03 172 42609E-03 207 6673 2112E-04 195 42057E-04 201
6673 58700E-04 202 10452E-03 205 26401 $4878E-05 202 10748E-04 198
L2-Projection method

43 13837E-01 - 30722E-01 - 149 11434E-02 - 27277E-02 -
121 36110E-02 259 70099E-02 285 445 30027E-03 244 11651E-02 155
445 86721E-03 219 17306E-02 214 1705 8&4470E-04 188 24454E-03 232

1705 23478E-03 194 42515E-03 209 6673 2191E-04 195 57123E-04 213
6673 59575E-04 201 10418E-03 206 26401 5$4986E-05 202  not converged
Least square method

43 12013E-01 - 30309E- 01 - 149 24329E-02 - 20318E- 02 -
121 28616E-02 277 69005E-02 286 445 50608E-03 287 37344E-03 309
445 @8597E-03 219 17308E-02 212 1705 86129E-04 263 46880E-04 308

1705 23311E-03 160 42958E-03 207 6673 11362E-04 296 76648E-05 265
6673 58774E-04 201 10585E-03 205 26401 2Z/760E-05 204 15193E-05 235
SPR-ZZ method

43 12639E-01 - 30257E- 01 - 149 11247E-02 - 13349E- 02 -
121 33130E-02 258 72141E-02 277 445 18777E-03 327 18975E-03 356
445 82461E-03 213 18068E-02 212 1705 19648E-04 336 22616E-04 316

1705 23337E-03 187 44622E-03 208 6673 23797E-05 309 29410E-05 299
6673 58201E-04 203 10974E-03 205 26401 3H754E-06 275 46791E-06 267

Table 6:L2 errors and orders of accuracy in the solution of the lineaeeiibn-difusion problem on triangular girds with the linear and novedir
schemes, for diierent gradient recovery strategies, and with linear andrgtia elements.
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Figure 6: L2 error in the solution of the linear advectionfidision problem on triangular girds with linear elements.oEof the solution (first
column), error of the-component of the gradient (second column) error ofteemponent of the gradient (third column). Linear schenppéu),
non-linear scheme (lower). In the legends are reportedtiésmean slopes of curves and 1/+/Ngof.

term makes the linear scheme converge much faster to thdystéste. The fect becomes even more important in
the case of non-linear scheme, where it is observed thatitenae of the extra dumping term prevents the scheme
to converge in most cases. For the quadratic elements, ésemee of the extra dumping term has twiees, it
improves the convergence of the numerical methods andd@daotes a crucial improvement in the level of accuracy,
for both linear and non-linear schemes.
For sake of completeness, the linear advectidtusiion problem is also solved with a very small viscosity eoef
ficient,v = 1075, in order to verify that the numerical schemes are able tegxe the theoretical accuracy in the
advection limit. The errors, obtained on a sequence ofdti&ar grids, are reported in Fig. 12 for the linear and the
non-linear schemes. As expected, the theoretical accofabg schemes is reached independently from the gradient
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non-linear scheme (lower). In the legends are reportedtiésmean slopes of curves and 1/+/Ngof.

recovery method used, because theudive dfects are negligible in this regime, nevertheless the levatouracy of
the gradients obtained with the SPR-ZZ technique is be\tete that the error of the gradients are not normalized in

this case, due to the very small valueyatomponent of the gradient.

6.1.1. Discretization with the hyperbolic FOS

The linear advection-€fusion problem is now discretized by the means of the hyperB@S scheme described
in section 4.3. The objective is to compare the accuracy bagerformance of this formulation with the standard
scalar discretization. The linear scheme is used to digertite hyperbolic FOS and the scalar equation, in the latter
case the SPR-ZZ gradient recovery strategy is chosen. Aesequof triangular grids is considered, with linear and
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Figure 8: L2 error in the solution of the linear advectiorfidision problem on quadrangular girds with linear (dasheekliand quadratic (solid
lines) elements. Error of the solution (first column), erobtthe x-component of the gradient (second column) error ofydfoemponent of the
gradient (third column). Linear scheme (upper), non-lineeheme (lower). In the legends are reported also the meaesslof curves and

h = 1/+/Ngot.

guadratic elements, and the viscosity méenty is takes as @1. In Fig. 13 are shown the errors on the solution and
the x-component of the gradient, together with the CPU time (tosds), needed to reach the steady state.

With linear elements, there is only a smalffdrence in the errors discretization between the scalarlenB®S
formulation, however considering the CPU time versus thelteof error it is evident that the scalar scheme is much
more dfective than the FOS formulation. Note that the CPU time issuesd in seconds and is reported in logarithmic
scale; for example on the finest mesh the scalar schemeesa@liout ten minutes to reach the steady state, while the
FOS scheme requires about two hours. The slope of the curlketi@fe—error is about-2/3, for both schemes. In
[18] was observed a slope?/3 for the FOS scheme while a slop&/2 was observed for a scalar scheme based on
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the LDA RD plus a Galerkin scheme.

With quadratic elements, the accuracy on the solution nbthusing the FOS scheme is slightly better than that
obtained with the scalar scheme but the situation is comilglifferent if one looks at the accuracy of the gradient.
As already pointed out in [18], the discretization of the ésilic FOS with RD schemes does not allow to recover
the gradients with the same accuracy of the solution, urtfessnesh is regular. It can be noticed how the use of
the SPR-ZZ strategy allows to obtain a third order accureddignt while the FOS scheme gives only second order
accuracy. The last remark concerns the CPU time. An imgtigier method has been used for the FOS scheme and
an explicit Euler method has been used for the scalar schimscalar scheme is still much motéeetive than the
FOS scheme.
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Note that in the advection limit the smallest eigenvaludefltyperbolic FOS vanishes, this means that two of the
three eigenvalues are zero and the problem becomes illtommetil. It has been observed that the FOS scheme is not
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able to converge for the linear advectiorffdsion problem with the viscous cieienty taken as 1¢P.
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Figure 11:L2 error in the solution of the linear advectiorfidision problem, on triangular grids, versus the number of ®@&f the CPU time in
seconds.

6.2. Viscous Burger equation

The viscous Burger equation is now considered in order tothesaccuracy of the numerical schemes with a
non-linear problem. The governing equation reads

2 2
a(u) ou o4 onQ = 0,112

x\2) oy ™o
the problem admits the following exact solution

_ 2vmexp(-vyr?) sin(rx)

"~ a+ expvyn?) cosfrx)’ with a> 1.

Note that the exact solution of the steady two-dimensionalblem is obtained from the unsteady one-dimensional
problem, in which the time coordinated is substituted bytheordinates. In the simulations the paramatisrtaken

as 15 and the viscosity codficient is taken as.05. On the bottom, left and right boundaries the exact smus
imposed as Dirichlet boundary condition. The solution itidfized with a zero values everywhere, except on the
inflows boundaries where the exact solution is imposed.

A sequence of unstructured triangular grid is consideitegl weighted area and the SPR-ZZ gradient recovery
methods are used. The errors of the solution are reportedtite T8, while in Fig. 14 the errors of the solution are
shown together with the error of the gradients components.

With linear elements, the level of accuracy of the schemani®st identical, while with quadratic elements the
situation is very dferent. The use of weighted area gradient recovery has ardigasfect on the accuracy of the
solution, indeed the theoretical third order scheme hasdnge level of accuracy of the second order scheme. On
the other had, the use of the SPR-ZZ recovery method allowsristruct an optimal third order scheme and also the
accuracy of the gradients is improved.

6.3. Anisotropic dfusion problem

As last test case, a two-dimensiondtdsion problem is addressed, the viscosity is not considerbd a scalar
anymore but a tensor quantity and is taken to be anisotrdjie.aim of this test case is to study the accuracy of the
proposed RD schemes with a purdéfdsion problem, and the anisotropy of the viscous tensortiedanced to test
also the robustness of the numerical scheme.
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Linear elements Quadratic elements

Neof 2 (UM Ite e2(uM Ite Nyof e2(uM Ite e2(uM Ite
improved scheme standard scheme improved scheme stacterde

Linear scheme

43 12639E-01 454 11945E-01 465 149 1247E-02 3148 14256E-02 4443
121 33130E-02 538 31174E-02 726 445 B777E-03 2507 31427E-03 7065
445 82461E-03 532 88271E-03 1456 1705 D648E-04 2566 93957E-03 7125

1705 23337E-03 1319 25600E-03 2877 6673 B797E-05 7029 not converged -
6673 58201E-04 4428 81456E-04 6310 26401 3754E-06 23431 notconverged -
Non-linear scheme

43 30257E-01 474 29418E-01 529 149 13349E-02 4747 14830E-02 5566
121 72141E-02 686 67668E-02 992 445 1B975E-03 4544 65685E-03 11414
445 18068E-02 835 17301E-02 2003 1705 2616E-04 3991 83542E-04 9935

1705 44622E-03 1791 notconverged — 6673 29410E-05 5075 10561E-03 31636
6673 10974E-03 4897 notconverged — 26401 46791E-06 42370 notconverged -

Table 7:L? errors and orders of accuracy in the solution of the lineaeetibn-difusion problem on triangular girds with the linear and nawedir
schemes, for diierent gradient recovery strategies, and with linear andgtia elements.

Linear elements Quadratic elements
Ndof €2 (uh) OLz €2 (Uh) OLz Ndof €2 (Uh) OLz €2 (Uh) OLz
linear scheme non-linear scheme linear scheme non-lickans

Area-weight method

43 59271E-02 - 10499E- 01 - 149 14715E- 02 - 24544E- 02 -
121 15487E-02 259 29855E-02 243 445 43138E-03 224 85569E-03 192
445 A42777E-03 197 74273E-03 213 1705 10680E-03 207 22847E-03 196

1705 10909E-03 203 18620E-03 206 6673 26474E-04 204 65822E-04 182
6673 27724E-04 200 46826E-04 202 26401 &742E-05 202 18111E-04 187
SPR-ZZ method

43 59498E- 02 - 11058E- 01 - 149 10291E- 02 - 18169E- 02 -
121 15487E-02 260 30338E-02 250 445 18586E-03 312 34757E-03 302
445 A2777E-03 197 74699E-03 215 1705 18965E-04 339 34741E-04 342

1705 10909E-03 203 18382E-03 208 6673 19434E-05 333 43199E-05 305
6673 27724E-04 200 45498E-04 204 26401 24617E-06 300 47009E-06 322

Table 8:L2 errors and orders of accuracy in the solution of the viscaug/& problem on triangular girds with the linear and nawedir schemes,
for different gradient recovery strategies, and with linear andmgtia elements.
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Figure 12: L2 error in the solution of the linear advectionfidision problem, withy = 1078, on triangular girds with linear (dashed lines) and
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The difusion problem is formulated as follows [27]

~V-(KVu)=0, onQ=[0,1]%
10
“=o 3

u = sin(2rx) e 2YVIo |
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the problem has the following exact solution
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Figure 13:L2 error in the solution of the linear advection problem witk 0.01 on triangular girds, with linear (dashed lines) and gatcl(solid
lines) elements. Error of the solution (first column), ewbthe x-component of the gradient (second column) CPU time in séxwarsus the error
(third column). Linear scheme (upper), non-linear schelmes(). In the legends are reported also the mean slopeswésanch = 1/4/Ngof.

and in the numerical simulatiowss takes as 10

A sequence on unstructured triangular grids is considénedscalar schemes with the weighted area and SPR-Z2Z
gradient recovery strategies are considered. In Fig. 15em@rted the errors of the solution and of the gradients for
linear and quadratic elements. As usual, the second ortlenses have the same level of accuracy independently
of the gradient recovery method used, but with quadratimefgs only the use of the SPR-ZZ method allows to get
a third order accuracy on the solution as well as on the gnéslidt is interesting to note that the accuracy of the
non-linear scheme is severely spoiled by the use of the simpighted area method with quadratic elements.

In the end, the anisotropic viscous problem is solved on #otmij structured mesh of quadrangles, results are
shown in Fig. 16 and indicated that the theoretical accunéttye schemes is achieved independently from the gradient
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Figure 14:L2 error in the solution of the viscous Burger problem on trislaggirds with linear (dashed lines) and quadratic (sdfidd) elements.
Error of the solution (first column), error of thecomponent of the gradient (second column) error ofyte®mponent of the gradient (third
column). Linear scheme (upper), non-linear scheme (lowerthe legends are reported also the mean slopes of curdds=ani/v/Ngof.

recovery technique used, although the accuracy of thegmaidi always better with the SPR-ZZ method. This remark
is important because for advectiortfdsion problems, even the use of uniform, structured griés ot preserve the
formal accuracy of the scheme unless the gradients aregsswith high order accuracy.

7. Conclusion

An high order accurate and robust Residual Distributioresah for the solution of advection4tlision equations
has been presented. The method relies on the computatidotaf eesidual for the whole equation without construing
two different type of schemes for the advection arftlidion parts. A fundamental aspect of the construction taget
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Figure 15:L2 error in the solution of the anisotropicfiiision problem on triangular girds with linear (dashed ljresd quadratic (solid lines)
elements. Error of the solution (first column), error of theomponent of the gradient (second column) error ofytttemponent of the gradient
(third column). Linear scheme (upper), non-linear schelmes(). In the legends are reported also the mean slopeswésandch = 1/4/Ngof.

high order approximation of the solution is the high ordeoresry of the gradient of the numerical solutionfiBrent
recovery techniques has been analyzed, in particular thersonvergent patch recovery of Zienkiewicz and Zhu
has shown to posses a such level of the flexibility and acgurmaguaranty the construction of third order accurate
RD schemes for general unstructured grids. The accuradyeofiimerical schemes has been verified with linear,
non-linear advection-éiusion problems and anisotropididision problems.

References

[1] B. Cockburn, G. Karniadakis, C. Shu, Discontinuous @afemethods: theory, computation and application, Lextustes in computational
science and engineering, Springer, Berlin, 2000.

34



-0.

-1.

. log(L? error)

g

— 8- - Weighted area (2.13) OF— 51" "Weighted area (2.07) ] osf — -8— © Weighted area (2.12) ]
s5f — A— - SPR-ZZ(2.13) ] — -A— - SPR-ZZ(1.93) prt — —-A— - SPR-ZZ(2.00)
—8—— Weighted area (3.28) & —8&—— Weighted area (2.16) , A of —B—— Weighted area (3.45) 3
1 —&— SPR-ZZ(3.11) P ] —&—— SPR-ZZ(3.27) 4 — A SPR-ZZ(3.16)
-1 k -0.5F E
s5F E
Ak E
2F ] 15F E
o= 2f 1 =
5F B e 2
@ & 2f E
) )
3r ] = Z25F ]
o o
o 4l i °
5F E 3k E
af 1 35F 1
5F B -Ar T -4F E
5F B -45F 1
5k L L L B 5k L L L . 5E L L L !
2 -1.5 -1 -2 -1.5 -1 2.5 -2 -1.5 -1
log(h) log(h) log(h)

Figure 16: L2 error in the solution of the anisotropicftlision problem on uniform, structured grid of quadrangleih linear (dashed lines)
and quadratic (solid lines) elements. Error of the solufiimst column), error of thex-component of the gradient (second column) error of the
y-component of the gradient (third column). Linear schenppéu), non-linear scheme (lower). In the legends are reg@iso the mean slopes of
curves and = 1/v/Ngof.

(2]
(3]

(4]
(5]

[6]
7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

R. Struijs, H. Deconinck, P. L. Roe, Fluctuation spfitiischemes for the 2d Euler equations, in: Von Karman Instfr Fluid Mechanics
Lecture Series on Computational Fluid Mechanics.

R. Abgrall, Toward the ultimate conservative schemeidvwing the quest, Journal of Computational Physics 16 D(3®@77 — 315.

R. Abgrall, Residual distribution schemes: Currentistaand future trends, Computers & Fluids 35 (2006) 641 — 669.

H. Nishikawa, P. L. Roe, On high-order fluctuation-gplig schemes for Navier—Stokes equations, in: ComputatiBluid Dynamics 2004:
Proceedings of the Third International Conference on Cdatjmnal Fluid Dynamics, ICCFD, Toronto, 12-16 July 2004riBger 2006,
2004.

R. Abgrall, P. L. Roe, High-order fluctuation schemes wartgular meshes, Journal of Scientific Computing 19 (2@936.

R. Abgrall, C. W. Shu, Development of residual distrioat schemes for the discontinuous Galerkin method: theascalse with linear
elements, Communications in Computational Physics 5 (2806—-390.

R. Abgrall, A residual distribution method using distimmious elements for the computation of possibly non sméoths, Advances in
Applied Mathematics and Mechanics 2 (2010) 32—44.

M. Hubbard, A framework for discontinuous fluctuationstlibution, International Journal for Numerical MethodsFluid 56 (2008)
1305-1311.

R. Abgrall, M. Mezine, Construction of second-ordeca@te monotone and stable residual distribution scheoresnisteady problem,
Journal of Computational Physics 195 (2004) 474-507.

E. van der Weide E., H. Deconinck, G. Degrez, A paralfaplicit, multi-dimensional upwind, residual distribati method for the Navier-
Stokes equations on unstructured grids, Computationahkfécs (1999) 199-208.

H. Paillere, Multidimensional upwind residual difwtion schemes for the Euler and Navier-Stokes equationsstiuctured grids, Ph.D.
thesis, von Karman Institure for Fluid Dynamics, 1995.

M. Ricchiuto, N. Villedieu, R. Abgrall, H. Deconinck, iouniformly high-order accurate residual distributionesttes for advection-fiusion,
Journal of Computational and Applied Mathematics 215 (2@2g — 556.

H. Paillére, J. Boxho, G. Degrez, H. Deconinck, Muhignsional upwind residual distribution schemes for theveation-ditusion equation,
International Journal for Numerical Methods in Enginegr28 (1996) 923—-936.

D. Caraeni, L. Fuchs, Compact third-order multidimienal upwind scheme for Navier—Stokes simulations, Théieand Computational
Fluid Dynamics 15 (2002) 373-401.

C.-S. Chou, C.-W. Shu, High order residual distribotmpnservative finite dierence WENO schemes for convectioffaiion steady state
problems on non-smooth meshes, Journal of Computationali¢h224 (2007) 992 — 1020.

H. Nishikawa, A first-order system approach foffdsion equation. I: Second-order residual-distributionesee, Journal of Computational
Physics 227 (2007) 315-352.

H. Nishikawa, A first-order system approach foffdsion equation. II: Unification of advection andfdsion, Journal of Computational
Physics 229 (2010) 3889-4016.

R.-H. Ni, A multiple grid scheme for solving the Eulerwjions, in: 5th Computational Fluid Dynamics Conferemge,257—264.

R. Abgrall, Essentially non-oscillatory residual wisution schemes for hyperbolic problems, Journal of Cotagonal Physics 214 (2006)

35



773-808.

[21] H. Nishikawa, Robust and accurate viscous discrétimatia upwind scheme I: Basic principle, Computers & Flud@s(2011) 62—-86.

[22] R. Abgrall, D. D. Santis, M. Ricchiuto, High order resal distribution scheme for rans equations, in: Seventrfational Conference on
Computational Fluid Dynamics, ICCFD7-2802, 2012.

[23] O. Zienkiewicz, R.L.Taylor, Finite Element Method {GEdition) Volume 1 - The Basis, Elsevier, 2000.

[24] L. R. Herrmann, Interpretation of finite element progeslas stress error minimization procedure, Journal of thgireering Mechanics
Division 98 (1972) 1330-1336.

[25] O. C. Zienkiewicz, J. Z. Zhu, A simple error estimatodaadaptive procedure for practical engineerng analysigrnational Journal for
Numerical Methods in Engineering 24 (1987) 337-357.

[26] O. C. Zienkiewicz, J. Z. Zhu, The superconvergent patdovery and a posteriori error estimates. part 2: Erromasés and adaptivity,
International Journal for Numerical Methods in Enginegra3 (1992) 1365-1382.

[27] R. E. Robert, J.-C. Fournier (Eds.), Finite Volumes@mumplex Applications V, 2008.

36



