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Abstract

This article investigates the potential for an r-adaptation algorithm to improve the effi-
ciency of space-time residual distribution schemes in the approximation of time-dependent
hyperbolic conservation laws, e.g. scalar advection, shallow water flows, on unstructured,
triangular meshes. In this adaptive framework the connectivity of the mesh, and hence
the number of degrees of freedom, remain fixed, but the mesh nodes are continually “relo-
cated” as the flow evolves so that features of interest remain resolved as they move within
the domain.

Adaptive strategies of this type are well suited to the space-time residual distribution
framework because, when the discrete representation is allowed to be discontinuous in
time, these algorithms can be designed to be positive (and hence stable) for any choice of
time-step, even on the distorted space-time prisms which arise from moving the nodes of
an unstructured triangular mesh. Consequently, a local increase in mesh resolution does
not impose a more restrictive stability constraint on the time-step, which can instead
be chosen according to accuracy requirements. The order of accuracy of the fixed-mesh
scheme is retained on the moving mesh in the majority of applications tested.

Space-time schemes of this type are analogous to conservative ALE formulations and
automatically satisfy a discrete geometric conservation law, so moving the mesh does not
artificially change the flow volume for pure conservation laws. For shallow water flows
over variable bed topography, the so-called C-property (retention of hydrostatic balance
between flux and source terms, required to maintain the steady state of still, flat, water)
can also be satisfied by considering the mass balance equation in terms of free surface
level instead of water depth, even when the mesh is moved.

The r-adaptation is applied within each time-step by interleaving the iterations of the
nonlinear solver with updates to mesh node positions. The node movement is driven by a
monitor function based on weighted approximations of the scaled gradient and Laplacian
of the local solution and regularised by a smoothing iteration. Numerical results are shown
in two dimensions for both scalar advection and for shallow water flow over a variable bed
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which show that, even for this simple implementation of the mesh movement, reductions
in cpu times of up to 60% can be attained without increasing the error.

Keywords: moving meshes, conservative ALE, upwind residual distribution, shallow
water equations, discontinuous space-time representation, well-balanced schemes

1. Introduction1

Residual distribution schemes [1, 2] have been developed as an alternative to flux-2

based approaches [3, 4, 5] for approximating hyperbolic conservation laws. They provide3

a framework within which the underlying flow physics can be represented in a genuinely4

multidimensional manner, unlike the approximate Riemann solvers employed in finite vol-5

ume and discontinuous Galerkin schemes [5], while simultaneously avoiding the introduc-6

tion of spurious numerical oscillations, especially in the vicinity of discontinuities. Robust7

and accurate steady-state schemes appeared in the 1980s and 1990s and were combined8

with adaptive mesh movement to improve their shock-capturing capabilities [6]. Since9

then, both explicit, Runge-Kutta [7, 8], and implicit, space-time [9, 10], schemes have10

been developed for simulating time-dependent problems.11

Recent research has focussed on improving the efficiency of these time-dependent meth-12

ods by moving the computational mesh so that the features of interest are resolved by13

regions in which mesh nodes are more densely clustered (r-adaptivity). The aim is to14

make the most efficient use of a fixed number of degrees of freedom by placing them15

where they will most effectively reduce the error. Explicit residual distribution schemes16

have been combined successfully with mesh movement in [11, 12, 13] – this paper will17

discuss the application of moving meshes in the space-time framework. There are par-18

ticular attractions of combining mesh movement with these implicit methods because,19

by allowing a discontinuous-in-time representation, they can be constructed in a manner20

which is unconditionally stable [10], so (as long as the nonlinear implicit solver can be21

persuaded to converge) the size of the time-step can be chosen on the basis of accuracy –22

it is not limited by a CFL constraint determined by the size of the computational mesh.23

The implicit nature of our scheme allows us to interleave the iterations of our nonlinear24

solver with adjustments to the positions of the mesh nodes at the new time level in the25

space-time mesh. In line with many standard approaches, e.g. [14, 15], the mesh movement26

is determined by an iteration which, at convergence, aims to equidistribute a monitor27

function which is chosen to indicate regions where the local error is high. We choose a28

monitor based on first and second derivatives of the dependent variable, to demonstrate29

the algorithm and give an indication of the potential of combining mesh movement with30

space-time residual distribution.31

All mesh movement algorithms should satisfy a discrete geometric conservation law32

(DGCL) [16] – this guarantees that no mass is artificially created or destroyed by the33

movement of the mesh – and conservative space-time schemes inherit this property au-34

tomatically. In fact, the space-time schemes are closely related to standard arbitrary35

Lagrangian-Eulerian (ALE) schemes, and can be used to derive ALE schemes which in-36

herit the DGCL. As such, they might be classed as velocity-based moving mesh methods37

[17, 18], in which the node displacements from one time level to the next imply a mesh38

velocity field. This contrasts with the transformation-based approach, which has been ap-39
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plied to the explicit residual distribution schemes in [11, 19], though the two approaches40

are related.41

We aim to apply space-time residual distribution with moving meshes to the shallow42

water equations, a nonlinear, hyperbolic, system of partial differential equations com-43

monly used to study the hydrodynamics of coastal and river flows. This raises an ad-44

ditional issue, the preservation of the “lake-at-rest” steady state, in which the numerical45

approximations to the flux and source terms balance perfectly when the bed topography46

varies. This is also known as the C-property or well-balanced property, and has been the47

subject of much research in the last 20 years, particularly in the context of flux-based48

schemes [20, 21, 22]. It is actually more natural for residual distribution schemes to49

satisfy this property because the discrete flux and source terms which must balance are50

both evaluated using volume integrals, and appropriate schemes have been developed on51

fixed meshes. We will show how this can be extended to moving meshes for the space-52

time approach, linking it with recent work combining moving meshes with the explicit,53

Runge-Kutta, schemes [11].54

The paper is organised as follows: in Section 2.1 we introduce the space-time residual55

distribution framework for a scalar hyperbolic conservation law and describe how it can be56

applied on the distorted triangular prisms that arise from moving the mesh in two space57

dimensions. This is supplemented by a proof that, when allowing discontinuities in time,58

the space-time N scheme satisfies a discrete maximum principle for any time-step. The59

extension to nonlinear systems of equations is described in Section 2.2 and its application60

to the shallow water equations is given in Section 2.3, with particular attention paid to61

the issues relating to producing a scheme which is both conservative and well-balanced62

when the mesh is moved over a variable bed topography. A simple moving mesh iteration63

is described in Section 2.4, along with an outline of how it is combined with the nonlinear64

implicit solver. Numerical results which demonstrate the potential of the adaptive scheme65

when applied to scalar conservation laws and the shallow water equations in two space66

dimensions are provided in Section 3 and concluding remarks are given in Section 4.67

2. Residual Distribution on Moving Meshes68

In this section, we present a description for space-time discontinuous residual distri-69

bution (STDRD) schemes for hyperbolic conservation laws with zero right-hand side on70

distorted triangular prisms, ones in which the two triangular faces are parallel (each is71

fixed at a constant time level) but may otherwise be different. A detailed description of72

STDRD schemes on right triangular prisms can be found in [10]. We will show how ap-73

plying this scheme on distorted prisms relates to ALE-type approaches [13, 19] which are74

more commonly considered when the spatial mesh is allowed to change from one time-step75

to the next.76

Consider a two-dimensional spatial domain Ω ⊂ R2, its triangular tesselations at77

time levels n and n + 1, Ωn
h and Ωn+1

h respectively, and the corresponding space-time78

mesh, (Ωt
h)

n, between these two time levels. Let En denote a given triangular element79

of the spatial mesh at time level n, Et
n denote the corresponding space-time element,80

defined by joining the corresponding vertices of En and En+1 with straight lines (see81

Figure 1), and define Di = ∪i∈EE to be the patch of elements with vertex i in common82
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(the superscript indicating the time level has been dropped because the spatial mesh83

connectivity is assumed to remain unchanged throughout the computation). Note that Et
n

84

can be constructed using a bilinear transformation of a right prism, forming a “distorted85

prism” which will not necessarily be a polyhedron because the vertices of each lateral face86

are not constrained to be coplanar. The residual distribution schemes described in the87

following sections generalise straightforwardly to three space dimensions.88

2.1. Scalar Equations89

Consider the scalar conservation law90

∂u

∂t
+∇ · f(u) = 0 or

∂u

∂t
+ a(u) ·∇u = 0 (1)

with appropriate initial conditions and Dirichlet boundary conditions at the inflow part91

of the domain. Here f(u) represents the conservative flux vector and a(u) = ∂f/∂u is92

the corresponding wave speed. The associated residual over the space-time element Et
n

93

is given by94

φn
Et

=

tn+1
∫

tn

∫

E(t)

(

∂u

∂t
+∇ · f

)

dΩ dt . (2)

For the original (non-discretised) equation (1), it therefore holds that95

tn+1
∫

tn

∫

Ω(t)

(

∂u

∂t
+∇ · f

)

dΩ dt =
∑

En
t
∈(Ωt

h
)n

φn
Et

, (3)

provided that the solution u is bounded and piecewise differentiable.96

It is also worth recalling here that, by the Reynolds transport theorem,97

d

dt

∫

E(t)

u dΩ =

∫

E(t)

∂u

∂t
dΩ+

∫

∂E(t)

uv · n̂ dΓ , (4)

in which n̂ is the outward-pointing unit vector normal to the element boundary ∂E(t) and98

v is the velocity of this moving boundary. Applying the divergence theorem, integrating99

with respect to time, and combining with Equation (2) then gives100

φn
Et

=

∫

E(tn+1)

u(tn+1) dΩ−
∫

E(tn)

u(tn) dΩ+

tn+1
∫

tn

∫

∂E(t)

(f − uv) · n̂ dΓ , (5)

i.e. solving φn
Et

= 0 for all elements is equivalent to updating the solution according101

to the Reynolds transport theorem. This observation is presented to emphasise the close102

relationship between the residual distribution method derived in this paper by integrating103

the residual over a space-time element and the family of conservative ALE methods based104

on discretising the Reynolds transport theorem [23, 24]. From now on the superscript ·n105

will be dropped from the notation where the time level is obvious from the context.106
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2.1.1. Distributing the Residual107

For STDRD, only right prisms have been considered so far in the literature [9, 10],108

i.e. when the spatial coordinates of En and En+1 are exactly the same. In this work, the109

positions of the mesh nodes at time level tn+1 are allowed to differ from their positions110

at time level tn. Even though the STDRD framework allows for discontinuities in time,111

the spatial coordinates of En are fixed at the values obtained in the previous time-step112

to avoid having to apply a conservative reconstruction of the dependent variable on the113

new mesh. For simplicity, it is also assumed that the shape of the domain Ω remains114

unchanged, and that boundary nodes only move along the boundary, not perpendicular115

to it. This condition could be relaxed, as long as the movement of the boundary can116

be predicted accurately and an appropriate boundary condition can be defined on the117

moving boundary.118

The derivation of the STDRD numerical discretisation to be used here follows precisely119

that presented in [10] for fixed meshes. In particular, it is assumed that the dependent120

variable has a piecewise linear continuous representation in space at any given time, but121

discontinuities are allowed in time. This leads to a family of schemes which are second-122

order accurate and unconditionally stable – higher-order schemes have been derived on123

fixed meshes [25, 26, 27, 28, 29, 30, 31, 32]. The discretisation consists of the following124

general steps:125

1. In every space-time element, replace the unknown variable u with an approximation126

uh that varies linearly along the edges of the element.127

2. Transform the element residual into a space-time boundary integral:128

φEt
=

tn+1
∫

tn

∫

E(t)

(

∂uh

∂t
+∇ · fh

)

dΩ dt =

∫

Et

∇t · f t dΩt =

∫

∂Et

f t · n̂t dΓt , (6)

where ∇t = (∂t, ∂x, ∂y), f t = (uh, fh), and n̂t is the outward-pointing unit vector129

normal to the surface of the space-time element.130

In this work, it is assumed that the edges of each space-time element are straight131

lines (the mesh node velocities are assumed to be constant within each time-step)132

and that the surface of each lateral face is defined by the bilinear interpolant of its133

four vertices. The outward-pointing normal to a lateral face nt is therefore parallel to134

(0, e)∧ (1, v), in which e is the anticlockwise-oriented edge of the triangle obtained135

from the intersection of the space-time element with the x-plane at t ∈ [tn, tn+1]136

(see Figure 1) and v is the local mesh velocity, defined by linear interpolation of the137

velocities at the two vertices defining this edge. Since v at each spatial mesh node138

is assumed to be constant in time, it is simple to show that139

(0, e) ∧ (1, v) = (−n · v,n) . (7)

Furthermore, n̂t in Equation (6) is the unit vector normal to the surface of the space-140

time element, with direction nt = (−n · v,n) on the lateral faces and nt = (±1, 0)141

on the triangular faces.142
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tn

tn+1

E(t)

e(t) e(t)
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nt(t)
n(t)

t

Plan View

Figure 1: Geometry of the space-time element (a bilinear transformation of a right triangular prism) for
the moving mesh algorithm.

3. Integrate over the two triangular faces and apply the trapezoidal rule in time to the143

lateral faces, giving144

φEt
=

∫

En+1

un+1
h dΩ−

∫

En

un
h dΩ+

∫

quads

f t · n̂t dΓt

=

∫

En+1

un+1
h dΩ−

∫

En

un
h dΩ+

tn+1
∫

tn

∫

E(t)

(fh · n̂− uhn̂ · v) dΓ dt

≈
∫

En+1

un+1
h dΩ−

∫

En

un
h dΩ

+
∆t

2

⎧

⎨

⎩

∫

∂En

(f (un
h)− un

hv) · n̂ dΓ+

∫

∂En+1

(

f(un+1
h )− un+1

h v
)

· n̂ dΓ

⎫

⎬

⎭

=

∫

En+1

un+1
h dΩ−

∫

En

un
h dΩ+

∆t

2
(φn

E + φn+1
E ) ,

(8)

in which145

φE =

∫

E

(∇ · fh −∇ · (uhv)) dΩ =

∫

∂E

(fh − uhv) · n̂ dΓ . (9)

This is immediately recognisable as a conservative ALE formulation [23] (see Equa-146

tion (5)), as has already been applied within the RD framework in [11, 13]. This147

formulation may also be derived in terms of mappings between the meshes at the148

two time levels [19]. This a second-order accurate approximation of the space-time149

element residual, as long as the spatial residuals, φn
E and φn+1

E , are computed to be150

at least one order more accurate than the discretisation itself.151

4. Distribute the space-time element residual, φEt
in Equation (8), to the six vertices152

of the element in a conservative manner, i.e. the fractions of the residual sent to153
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vertex with spatial index i at time levels n and n+ 1 are defined as154

φE
i,n = βE

i,nφEt
and φE

i,n+1 = βE
i,n+1φEt

, (10)

in which the distribution coefficients are defined such that155

∑

i∈E

βE
i,n +

∑

i∈E

βE
i,n+1 = 1 . (11)

5. Integrate across the discontinuity in time, to produce additional residuals which,156

since the initial spatial mesh for the new time-step is constrained to be the same157

as the final spatial mesh at the previous time-step, can be viewed as space-time158

residuals evaluated in the limit ∆t → 0, i.e.159

ψE =

∫

∂Et

f t · n̂t dΓt =

∫

∂E

[un
h] dΩ =

|En|
3

∑

i∈E

[un
i ] , (12)

where |En| is the area of the triangular element En, [un] = un+ − un−

(in which160

un±

= limt→(tn)± uh) represents the jump across the triangular face and piecewise161

linear variation of uh in space has been assumed. The ± superscripts are suppressed162

in the majority of what follows: within a space-time element n and n+1 implicitly163

indicate n+ and (n + 1)−, respectively, and ψE is evaluated at time level n.164

Distribute this residual to the three vertices of the element En in a conservative165

manner: the simple vertex-centred distribution166

ψE
i,n =

|En|
3

[un
i ] , (13)

was shown in [10, 33, 34] to have all the properties one might ask of a residual167

distribution scheme, and this is the formulation that is used throughout this article.168

No modification is required to accommodate the moving meshes. We emphasise169

that there is a distinction between Equation (13) and a pure Galerkin distribution170

of the interface residual. In fact, the distribution defined by (13) is purely upwind171

in time. Furthermore, the spatial distribution of the residual (12) is derived from172

applying mass lumping to the contribution of the integral of the time derivative173

to the space-time residual [34]. This leads to a weak, pointwise, imposition of the174

solution at the previous time-step. The proof in Appendix B demonstrates that this175

choice will not produce spurious numerical oscillations.176

6. Solve the nonlinear algebraic system derived by distributing the residuals, (10) and177

(13), to the vertices of the space-time elements:178

∑

E∈Di

(

φE
i,n + ψE

i,n

)

= 0

∑

E∈Di

φE
i,n+1 = 0

(14)

∀i ∈ Ωh at each time-step.179

It remains to evaluate the spatial residual, φE in (8), and the distribution coefficients, βE
i180

in (10).181
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2.1.2. Evaluating the Residual182

Since both uh and v are assumed to vary linearly along each edge of the spatial mesh,183

φE in (9) can be evaluated exactly using Simpson’s rule, for appropriate fluxes, leading184

to185

φE =

∫

∂E

(f (uh)− uhv) · n̂ dΓ

=
∑

i∈E

(

−1

2
a · ni +

1

2

(

vi · ni −
1

3
(vj − vi) · nk −

1

3
(vk − vi) · nj

))

ui ,

(15)

in which φE can be evaluated at any time t and j, k are the vertices of E which are not i.186

It is assumed here that a conservative linearisation [35] is available for the PDE (1) and187

that a is the corresponding averaged velocity, e.g. for divergence-free scalar advection this188

is the arithmetic mean of the vertex values.189

The form of the residual is simplified somewhat if the trapezoidal rule (an approxi-190

mation which retains second-order accuracy) is used to evaluate the integrals along the191

mesh edges, giving192

φE ≈
∑

i∈E

(

−1

2
(a− vi) · ni

)

ui . (16)

When ∇ · v = 0 the two forms for the residual, (15) and (16), are equivalent for linearly193

varying u and v. However, the terms corresponding to the mesh movement cannot be194

incorporated within the conservative linearisation in either formulation because the mesh195

velocity field does not, in general, satisfy ∇ · v = 0. Previous implementations [13] have196

included an element-averaged value of v in the linearisation but added a source term to197

compensate for the mesh velocity-divergence.198

Having evaluated φE, it is now possible to write the discrete residual over the space-199

time element in the form200

φEt
=
∑

i∈E

ki,nu
n
i +

∑

i∈E

ki,n+1u
n+1
i . (17)

where, from (15),201

ki,n = −∆t

4
an · nn

i

+
∆t

4

(

vi · nn
i −

1

3
(vj − vi) · nn

k −
1

3
(vk − vi) · nn

j

)

− |En|
3

,

ki,n+1 = −∆t

4
an+1 · nn+1

i

+
∆t

4

(

vi · nn+1
i − 1

3
(vj − vi) · nn+1

k − 1

3
(vk − vi) · nn+1

j

)

+
|En+1|

3
,

(18)

ni being the outward-pointing normal vector (in space only) opposite node i, at the202

specified time level, scaled by the length of the edge opposite node i. Note that v is203

assumed to remain unchanged during a time-step so the superscripts denoting the time204
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level have been dropped. If, as in (16), the residuals are approximated instead using the205

trapezoidal rule, then206

ki,n = −∆t

4
(an − vi) · nn

i −
|En|
3

,

ki,n+1 = −∆t

4

(

an+1 − vi

)

· nn+1
i +

|En+1|
3

.

(19)

In fact, for both approximations,207

∑

i∈E

ki,n +
∑

i∈E

ki,n+1 = 0 , (20)

so either (18) or (19) can be used to define the inflow parameters in any of the standard208

residual distribution schemes (proof provided in Appendix C). For simplicity and clarity,209

we will use the trapezoidal rule approximation (19) from now on, since the overall scheme210

remains second-order accurate.211

There are two important consequences of (20).212

1. The space-time N scheme (detailed in [2] and outlined in the next section) may be213

used in its standard form with the new definitions of the ‘inflow’ parameters ki,n214

and ki,n+1 taken from either (18) or (19). It also allows us to define the quantities215

k+
i,n = max(0, ki,n) , k−

i,n = min(0, ki,n) ,

k+
i,n+1 = max(0, ki,n+1) , k−

i,n+1 = min(0, ki,n+1) ,

Nt =
1

∑

i∈E k+
i,n +

∑

i∈E k+
i,n+1

,

(21)

which will be used in the distribution schemes described in the next section.216

2. Any conservative residual distribution scheme, one for which217

∑

i∈E

βE
i,n +

∑

i∈E

βE
i,n+1 = 1 , (22)

will satisfy a discrete geometric conservation law (DGCL) [16], i.e. the trivial solu-218

tion u ≡ constant is preserved when the mesh is moved.219

This is easy to show because, for all of the schemes defined in Section 2.1.3, Equa-220

tions (17) (or (6)) and (21) give221

un+1 = un+

= un−

= K ⇒ φE
i,n = ψE

i,n = φE
i,n+1 = 0 . (23)

Thus un+1 = K satisfies (14) and is a possible solution at the new time level. More-222

over, it is the solution that would be found by the pseudo-time-stepping iteration223

described in Section 2.1.4.224
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2.1.3. Evaluating the Distribution Coefficients225

The typical design requirements for RD schemes include [36]226

• positivity, which warrants that the numerical approximations are free of spurious227

oscillations;228

• linearity preservation, which ensures that a (k−1)th-order polynomial representation229

of uh leads to a kth-order accurate scheme [26];230

• conservation, which guarantees that discontinuities are captured correctly and that231

the approximation converges to a weak solution of (1) as the mesh is refined;232

• compactness, which is primarily for computational efficiency and requires that the233

element residual be distributed to its own vertices only; and234

• continuous dependence of the coefficients on both the solution and the advection235

velocity, which enhances the iterative convergence of any algebraic solver applied to236

(14).237

The schemes are also often designed to be upwind, i.e. the discretised model propagates238

information in the same direction and at the same velocity as its non-discretised counter-239

part. Since this provides postivity and improved numerical stability relative to centred240

schemes, we choose to consider upwind schemes in this work, though other successful RD241

schemes have been developed [2].242

We briefly describe here the space-time upwind schemes that are the focus of this243

investigation. As before, the use of n and n + 1 within an element residual implies n+
244

and (n + 1)−.245

• The space-time N (STN) scheme is here defined in a form suitable for the con-246

servative residual distribution (CRD) formulation [37] (which will later be used in247

the approximation of the shallow water equations), i.e.248

uin
t = Nt

(

∑

j∈E

k+
j,nu

n
j +

∑

j∈E

k+
j,n+1u

n+1
j − φEt

)

,

(

φE
i,n

)N
= k+

i,n

(

un
i − uin

t

)

,
(

φE
i,n+1

)N
= k+

i,n+1

(

un+1
i − uin

t

)

,

(24)

using the inflow parameter definitions given by Equation (21). This is a linear249

scheme that has all the desired properties except linearity preservation.250

A proof of the unconditional positivity of this scheme on the space-time elements251

generated by the mesh movement is provided in Appendix B. In addition we note252

that positivity is only formally guaranteed if (17) is used for the computation of253

φEt
, though it is not always possible or desirable to evaluate the residual in this254

way. Nevertheless, oscillation-free behaviour is also often observed in computational255

experiments [2] for the CRD scheme when an appropriate quadrature rule is used256

to evaluate φEt
directly from (6). The advantage of the CRD formulation is that it257

becomes simple to guarantee conservation, even when a conservative linearisation is258

not available or is prohibitively expensive to compute.259
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• The space-time LDA (STLDA) [37] scheme is defined as260

(

φE
i,n

)LDA
= k+

i,nNt φEt
,

(

φE
i,n+1

)LDA
= k+

i,n+1Nt φEt
, (25)

which is also a linear scheme and has all the desired properties except positivity.261

• By Godunov’s theorem [24, 38], only nonlinear schemes can satisfy the conditions262

for both positivity and linearity preservation. Therefore, in order to obtain all of263

the desired properties, nonlinear schemes must be considered.264

The space-time blended (STB) scheme combines two linear schemes, the STN265

and STLDA schemes, for example, through a nonlinear blending coefficient θ,266

(

φE
i,n

)B
= θ

(

φE
i,n

)N
+ (1− θ)

(

φE
i,n

)LDA
,

(

φE
i,n+1

)B
= θ

(

φE
i,n+1

)N
+ (1− θ)

(

φE
i,n+1

)LDA
.

(26)

The blending coefficient determines how ‘well’ the required properties, especially267

positivity, are satisfied. The choice adopted in this article, taken from [39], is268

θ =
|φEt

|
∑

i∈E

∣

∣

∣

(

φE
i,n

)N
∣

∣

∣
+
∑

i∈E

∣

∣

∣

(

φE
i,n+1

)N
∣

∣

∣

. (27)

Note also that the STN scheme can be written as the STLDA scheme plus additional269

dissipation [40], so the STB scheme may be considered in these terms (as it can be270

in the space-only case).271

2.1.4. Solving the Discrete System272

Once the distribution of the residual has been determined, the system (14) is solved273

using the following simple pseudo-time-stepping algorithm:274

(

un+

i

u(n+1)−

i

)

m+1

=

(

un+

i

u(n+1)−

i

)

m

− τi
∑

E∈Di

(

φE
i,n + ψE

i,n

φE
i,n+1

)

m

, (28)

where i is the spatial mesh node index. The subscript m is the index for the pseudo-time-275

step and the iteration is fully explicit. In order to provide an iteration which is positive at276

each step (and hence will not diverge), the local pseudo-time-step τi is chosen to satisfy277

τi ≤
1

∑

E∈Di
k+
i,n +

∑

E∈Di
k+
i,n+1

. (29)

In this work τi is chosen to be CFLτ times its maximum value, where CFLτ ≤ 1. The278

value of τ is allowed to change from node to node in order to accelerate convergence of279

the iteration.280
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2.2. Nonlinear Systems281

Consider now the nonlinear hyperbolic system of conservation laws,282

∂tU +∇ · F = 0 or ∂tU +A(U) ·∇U = 0 , (30)

where A(U) = [Ax,Ay] = [∂Fx/∂U, ∂Fy/∂U ] = ∂F /∂U is the wave-speed tensor. Fol-283

lowing the same approximation procedure as for the scalar equation (Section 2.1.1) gives284

a space-time residual of285

ΦEt
≈
∫

En+1

Un+1
h dΩ−

∫

En

Un
h dΩ

+
∆t

2

⎛

⎝

∫

∂En

(F (Un
h )− Un

h v) · n̂ dΓ+

∫

∂En+1

(

F (Un+1
h )− Un+1

h v
)

· n̂ dΓ

⎞

⎠ .

(31)

2.2.1. Evaluating the Residual286

The residuals in (31) may be approximated as287

ΦEt
≈
∑

i∈E

Ki,nU
n
i +

∑

i∈E

Ki,n+1U
n+1
i (32)

in which the K matrices are defined by, cf. Equation (18),288

Ki,n ≈ −∆t

4
A

n · nn
i

+
∆t

4

(

vi · nn
i −

1

3
(vj − vi) · nn

k −
1

3
(vk − vi) · nn

j

)

I − |En|
3

I ,

Ki,n+1 ≈ −∆t

4
A

n+1 · nn+1
i

+
∆t

4

(

vi · nn+1
i − 1

3
(vj − vi) · nn+1

k − 1

3
(vk − vi) · nn+1

j

)

I +
|En+1|

3
I ,

(33)
where I is the identity matrix and A represents an averaged state of the flux Jacobian289

A. In the simpler situation where the trapezoidal rule is used to integrate the spatial290

integrals, cf. Equation (19), the K matrices would be defined by291

Ki,n ≈ −∆t

4
A

n · nn
i +

∆t

4
vi · nn

i I − |En|
3

I ,

Ki,n+1 ≈ −∆t

4
A

n+1 · nn+1
i +

∆t

4
vi · nn+1

i I +
|En+1|

3
I .

(34)

For some systems, including the shallow water equations, ΦEt
and A can be derived292

from a conservative linearisation [35], so that (32) is an exact evaluation of the discrete293

residual. This approach is described in more detail in [10]. However, if the conservative294

linearisation is not known or its implementation is not practical, it is still possible to295

achieve conservation by evaluating the space-time element residual directly from (31) via296

a higher-order quadrature rule – this is one of the concepts behind the CRD schemes297
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[41, 42]. The K matrices in (34), which are required by the distribution schemes, are then298

evaluated using appropriate averaged states which depend on the time level at which299

A is being evaluated. In this work, for the shallow water equations, A
n

and A
n+1

are300

evaluated using the arithmetic means of the spatial element vertex values of the primitive301

variables, depth and velocity, at their respective time levels [10].302

2.2.2. Evaluating the Distribution Coefficients303

Assuming that the inflow matrices defined in (34) are diagonalisable, we have Ki,n =304

RDR−1, where D is the diagonal matrix of eigenvalues, R−1 is the matrix of the left and R305

of the right eigenvectors. Defining D± = 1
2 (D ± |D|) with |D| denoting the absolute values306

of the entries, we can generalise the inflow parameters defined in (21) to the matrices307

K+
i,n =

(

RD+R−1
)

i,n
, K+

i,n+1 =
(

RD+R−1
)

i,n+1
,

K−
i,n =

(

RD−R−1
)

i,n
, K−

i,n+1 =
(

RD−R−1
)

i,n+1
,

Nt =

(

∑

i∈E

K+
i,n +

∑

i∈E

K+
i,n+1

)−1

.

(35)

These matrices are used to define upwind RD schemes along the lines of the scalar case308

(24)–(26). Note that the presence of the volume term in the space-time residual, which309

corresponds to the time derivative, ensures that the eigenvalues of the K parameters can-310

not all vanish simultaneously [9, 43]. Consequently, Nt can always be evaluated without311

any need for regularisation.312

• The space-time N (STN) scheme for systems [2, 37] is defined as313

U in
t = Nt

(

∑

j∈E

K+
j,nU

n
j +

∑

j∈E

K+
j,n+1U

n+1
j − ΦEt

)

,

(

ΦE
i,n

)N
= K+

i,n

(

Un
i − U in

t

)

,
(

ΦE
i,n+1

)N
= K+

i,n+1

(

Un+1
i − U in

t

)

.

(36)

The CRD formulation is again used here, where ΦEt
is computed by integrating314

Equation (31) with an appropriate quadrature rule. If a conservative linearisation315

exists, and (32) is used to evaluate ΦEt
, then an alternative form must be used for316

U in (32) and (36) to retain conservation: this is described in more detail for the317

shallow water equations in [10].318

• The space-time LDA (STLDA) scheme for systems [2, 37] is defined as319

(

ΦE
i,n

)LDA
= K+

i,nNtΦEt
,

(

ΦE
i,n+1

)LDA
= K+

i,n+1NtΦEt
. (37)

• The space-time blended (STB) scheme for systems [2] is still defined as a com-320

bination of STN and the STLDA schemes,321

(

ΦE
i,n

)B
= Θ

(

ΦE
i,n

)N
+ (I −Θ)

(

ΦE
i,n

)LDA
,

(

ΦE
i,n+1

)B
= Θ

(

ΦE
i,n+1

)N
+ (I −Θ)

(

ΦE
i,n+1

)LDA
.

(38)
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The matrix blending parameter Θ can be computed in a number of different ways322

[44, 45]. The simplest generalisation of (27) is323

Θ1 = diag

⎛

⎝

|ΦEt
|

∑

i∈E

∣

∣

∣

(

ΦE
i,n

)N
∣

∣

∣
+
∑

i∈E

∣

∣

∣

(

ΦE
i,n+1

)N
∣

∣

∣

⎞

⎠ , (39)

where the division should be understood as an element-wise operation. Another324

possibility, proposed in [44] and used in this work, is to choose a particular direction325

ξ = (ξx, ξy) and compute the decomposition A · ξ = RξDξR−1
ξ . The blending (38)326

is then carried out on the “characteristic” residuals327

ΦN
i,n = (R−1

ξ )nΦ
N
i,n , ΦN

i,n+1 = (R−1
ξ )n+1Φ

N
i,n+1 ,

ΦLDA
i,n = (R−1

ξ )nΦ
LDA
i,n , ΦLDA

i,n+1 = (R−1
ξ )n+1Φ

LDA
i,n+1 ,

(40)

with the blending parameter computed as328

Θ2 = diag

(
∣

∣

∑

i∈E Φ
N
i,n +

∑

i∈E Φ
N
i,n+1

∣

∣

∑

i∈E

∣

∣ΦN
i,n

∣

∣+
∑

i∈E

∣

∣ΦN
i,n+1

∣

∣

)

, (41)

where we drop the superscript E to avoid clutter. Finally, we calculate the329

blended residuals based on the original variables by ΦB
i,n = (Rξ)nΦB

i,n and ΦB
i,n+1 =330

(Rξ)n+1ΦB
i,n+1. In this work, in order to aid iterative convergence within each time-331

step, the blending parameter, Θ2, is fixed after the first pseudo-time-step.332

The treatment of the discontinuity in time is directly analogous to (13). The residual333

due to the discontinuity in time is given by334

ΨE =

∫

∂E

[Un
h ] dΩ =

|En|
3

∑

i∈E

[Un
i ] , (42)

and the corresponding contributions are defined as [33]335

ΨE
i =

|En|
3

[Un
i ] . (43)

Combining this with the distribution of the element residuals leads to a system of nonlinear336

algebraic equations of the form337

∑

E∈Di

(

ΦE
i,n +ΨE

i,n

)

= 0

∑

E∈Di

ΦE
i,n+1 = 0

(44)

∀i ∈ Ωh, which needs to be solved at each time-step. Boundary conditions are applied as338

described in [46].339

14



2.2.3. Solving the Discrete System340

In this work a simple pseudo-time-stepping algorithm is used to solve Equation (44):341

(

Un+

i

U (n+1)−

i

)

m+1

=

(

Un+

i

U (n+1)−

i

)

m

− τi
∑

E∈Di

(

ΦE
i,n +ΨE

i,n

ΦE
i,n+1

)

m

. (45)

The local pseudo-time-step τi is chosen to satisfy342

τi ≤
1

∑

E∈Di
ϱ(K+

i,n) +
∑

E∈Di
ϱ(K+

i,n+1)
, (46)

in which ϱ(M) denotes the spectral radius of a given matrix M, so ϱ(K+
i ) = max diagD+

i ,343

and the Ki are given by (34). As in the scalar case, CFLτ ≤ 1 is chosen. The constraint344

provided by (46) is chosen so that in the scalar case the iteration reduces to one which345

satisfies a provable discrete maximum principle.346

2.3. Application to the Shallow Water System347

The space-time RD framework has been applied to the frictionless shallow water equa-348

tions with variable bed topography [10],349

∂U

∂t
+∇ · F (U) + S(U) = 0 on Ωt , (47)

where, in two space dimensions,350

U =

⎡

⎣

d
du
dv

⎤

⎦ , F =
[

Fx Fy

]

=

⎡

⎣

du dv

du2 + gd2

2 duv

duv dv2 + gd2

2

⎤

⎦ , S = −

⎡

⎢

⎣

0

gd∂b(x,y)
∂x

gd∂b(x,y)
∂y

⎤

⎥

⎦
, (48)

in which d is the water height, u = (u, v) is the flow velocity and b is the height of the351

bed topography. The level of the free surface is defined as η = d + b. One of the main352

challenges of discretising this system is the retention of the hydrostatic balance property353

(the C-property [20]) satisfied by the underlying equations, within the framework of a354

conservative scheme. In [11] this is simplified by approximating a “pre-balanced” form of355

the equations [47]: in this work we simply modify the mass balance equation, as described356

in Section 2.3.1.357

The CRD formulation, which guarantees conservation, is also applied [41], using the358

arithmetic means d, u, v of the values at the vertices of the triangular spatial elements359

as the averaged states in (34). The positivity of the STN scheme is formally lost, but360

we have typically observed oscillation-free solutions in our numerical experiments. There361

is no guarantee that this will always be the case, as shown in [48], in which a blending362

coefficient is derived using more rigorous arguments. In order to preserve hydrostatic363

balance, as described in the following section, the element-averaged free surface and bed364

levels, η and b respectively, must be evaluated in the same way as d wherever they appear.365

15



2.3.1. Preserving Hydrostatic Balance366

The shallow water system (47)–(48) is, by construction, in hydrostatic balance. Over367

a general non-flat bed, however, care is needed to ensure exact preservation of the C-368

property by the numerical algorithm. Some progress has been made on the development of369

well-balanced space-time discontinuous Galerkin schemes for the shallow water equations370

on moving meshes [49].371

It was proved in [42] that, when the water height d and the bottom topography b are372

both assumed to be linearly varying, the linearity preserving CRD schemes satisfy the373

C-property [42, 50, 51] on fixed meshes, as long as the contribution of the source term to374

the augmented space-time element residual, ΦEt
+ Φb

Et
at a given time level is computed375

as376

Φb
Et

= ∆t
gd

2

∑

i∈E

[

0
bini

]

≈
tn+1
∫

tn

∫

E(t)

S(U) dΩ dt , (49)

where ni is the outward normal to the edge opposite vertex i scaled by the length of the377

edge. In order for the STN scheme (36) (and the corresponding STB schemes) to satisfy378

hydrostatic balance, a slightly modified version of (36) must be applied. For fixed bed379

topography, ∂d
∂t

= ∂η
∂t

, so U = [d, du, dv]T can be replaced by V = [η, du, dv]T in the CRD380

formulation, using the arithmetic mean η in the approximation of the spatial integral of381

the time derivative term. This leads to382

V in
t = Nt

(

∑

j∈E

K+
j,nV

n
j +

∑

j∈E

K+
j,n+1V

n+1
j − ΦEt

− Φb
Et

)

,

(

ΦE
i,n

)N
= K+

i,n

(

V n
i − V in

t

)

,
(

ΦE
i,n+1

)N
= K+

i,n+1

(

V n+1
i − V in

t

)

.

(50)

A proof that this modifed N scheme satisfies the C-property on fixed meshes is given in383

[10].384

The proofs that the C-property is satisfied generalise straightforwardly to moving385

meshes because the STN and STLDA schemes take precisely the same general forms,386

(36) and (37) respectively: only the definitions of the K matrices and the residuals Φ are387

different. The form of the K matrices does not affect the proofs, so it only remains to388

construct the form of Φb
Et

(a generalisation of Equation (49)) which, when combined with389

the residual in Equations (31) and (42), satisfies390

ΨE + ΦEt
+ Φb

Et
= 0 when V = [η, du, dv]T = [const, 0, 0]T . (51)

In order to satisfy the C-property on a moving mesh, the contribution of the source term391

to the space-time element residual should be computed as392

Φb
Et

=
∆t

2

(

gd
n

2

∑

i∈E

[

0
bni n

n
i

]

+
gd

n+1

2

∑

i∈E

[

0
bn+1
i nn+1

i

]

)

. (52)

The details of the proof are given in Appendix A.393

As a consequence of choosing to approximate the residual using ∂η
∂t

instead of ∂d
∂t

, the394

resulting numerical scheme locally conserves the quantity395

∫

ηh dΩ−
∫

b(x) dΩ =

∫

dh dΩ+

∫

bh − b(x) dΩ (53)
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at convergence of the pseudo-time-stepping iteration described in Section 2.2.3. Here ηh,396

dh and bh are the piecewise linear approximations obtained by interpolating the nodal397

values and b(x) is the exact bed topography. This is equivalent to mass conservation398

(
∫

dh dΩ remains constant) in the special case where the mesh movement over the bed399

topography satisfies400

|En+1| bn+1 − |En| bn − ∆t

2

∑

i∈E

(

bn+1
i vi · nn+1

i + bni vi · nn
i

)

= 0 . (54)

The left-hand side of this equation is simply the residual of the equation bt = 0 approx-401

imated on the moving mesh. Equation (54) is satisfied when the mesh is fixed or when402

the bed topography is constant.403

2.4. The Moving Mesh Algorithm404

The mesh movement is implemented in a simple manner by interleaving the pseudo-405

time-stepping iteration used to solve the systems of equations, given by (28) in the scalar406

case and (45) for nonlinear systems, with another iteration which updates the node posi-407

tions at the new time level. It would be possible to select a different approach to moving408

the mesh, e.g. the variational approaches of Huang and Russell, described in the review409

paper [18] and the references therein, but instead of using the techniques they propose we410

observe that it is natural to embed the relaxation towards an equidistributed mesh within411

the existing nonlinear iteration. In this paper we show that r-adaptivity is potentially412

beneficial, and future work will seek to improve how to link the mesh movement with the413

PDE solver.414

In this work, one iteration of the mesh movement consists of moving each mesh node415

to a weighted average of the positions of the centroids of its adjacent elements, i.e.416

(δn+1
i )m =

∑

E∈Di
WE[(x

n+1
E )m − (xn+1

i )m]
∑

E∈Di
WE

where xE =
1

3

∑

j∈E

xj . (55)

At this stage, it is possible to relax the nodal movement by updating the nodal positions417

using418

(xn+1
i )m+1 = (xn+1

i )m + µ(δn+1
i )m . (56)

For simplicity, µ is chosen to have the same value for all nodes. However, during each419

iteration the displacements of each node may be restricted geometrically, if necessary, to420

avoid mesh tangling. A simple limit, which guarantees no tangling and depends only on421

the original mesh is given by retaining the direction of the displacement, but adjusting422

xn+1
i for each node, so that [6, 52]423

|(xn+1
i )m+1 − xn

i | ≤ min
E∈Di

(

|En|
max lEn

)

, (57)

where lE are the lengths of the edges of the triangular element E. Boundary nodes424

are restricted to remain on the boundary by ignoring the component of the movement425

perpendicular to the boundary. A more sophisticated treatment of boundary nodes will426

be necessary for concave domains, so that this projection does not induce mesh tangling.427
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Note also that the constraint (57) inhibits the rotation of spatial mesh elements and, in428

all cases investigated here, has ensured that the distortion of the space-time element does429

not cause it to collapse. If this did occur then a smaller time-step would be needed.430

The mesh velocity corresponding to the movement of each node, required for the431

subsequent residual distribution iteration, is calculated using the displacement relative to432

the nodal positions at the start of the iteration and given by433

(vi)m+1 =
(xn+1

i )m+1 − xn
i

∆t
. (58)

There are many possible choices for the element weights, WE (see, for example, [15, 18]434

and references therein). In this work, following [11], they are chosen so that nodes are435

moved towards regions of higher local solution gradients and Laplacians. The specific436

choice made here is given by437

WE(χ) =
√

1 + α(max(||∇χ||∗, ||∇2χ||∗))2 , (59)

where the || · ||∗ are defined by438

||∇χ||∗ = min

(

1,
||∇χ||2

βmax ||∇χ||2

)

and ||∇2χ||∗ = min

(

1,
||∇2χ||2

γmax ||∇2χ||2

)

,

(60)
in which || · ||2 indicates a discrete l2 norm. For the scalar equations, χ = u, and for the439

shallow water equations, χ = η. The quantities α, β and γ are free constant parameters,440

chosen according to the test case. These weights may be scaled locally by the initial441

element sizes if a predetermined mesh distribution, for example one in which the nodes442

are clustered around complex boundary geometry, is to be retained.443

On its own, this weighted averaging can produce disorted meshes which are detrimental444

to the quality of the approximate solution, so the algorithm also makes use of a Laplacian445

smoothing step, which is achieved by taking WE ≡ 1 in Equation (55). The relaxation446

parameter µ can be chosen separately in this step.447

2.4.1. Implementation Details448

Given an initial mesh and initial conditions and before initiating the time-stepping,449

the complete algorithm first adapts the mesh to the initial conditions. In this work a fixed450

number of iterations (Ninit) is used, each of which consists of the following steps.451

1. Update the mesh node positions, using one iteration of (55)/(56), with the chosen452

element weights WE , limiting the node movement according to (57) to avoid mesh453

tangling.454

2. Smooth the moved mesh using one relaxed Laplacian smoothing iteration, (55) with455

WE ≡ 1, and limiting the node movement according to (57) to avoid mesh tangling.456

3. Recompute the initial conditions and (if required) the bed topography at the new457

mesh node positions.458

Once the initial conditions have been adapted to, each time-step involves both mesh459

movement and pseudo-time-stepping iterations, which are initially interleaved.460
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1. The following steps are repeated until the stopping criteria for the adaptation are461

satisfied.462

(a) Update the mesh node positions at the new time level, using one iteration of463

(55)/(56), with the chosen element weights WE , and limiting the node move-464

ment according to (57) to avoid mesh tangling.465

(b) Smooth the mesh at the new time level using one relaxed Laplacian smoothing466

iteration, (55) with WE ≡ 1, and limiting the node movement according to467

(57) to avoid mesh tangling.468

(c) If required, recompute the bed topography at the new mesh node positions.469

(d) Carry out one iteration of the pseudo-time-stepping, (28) or (45), using the470

residuals calculated on the current distorted space-time prismatic elements471

and the chosen distribution scheme.472

2. Fix the nodal positions for the new time level, but continue the pseudo-time-stepping473

iterations, (28) or (45), using the residuals calculated on the distorted space-time474

prismatic elements and the chosen distribution scheme, until the stopping criteria475

for the pseudo-time-stepping are satisfied.476

3. Replace the mesh at the old time level with the mesh at the new time level, including477

the updated bed topography and solution.478

In all the iterations, we use a stopping criterion which combines a maximum number479

of iterations with a drop tolerance on the residual norm,480

rel_tol =
∥ (Ψn,Ψn+1)Tm ∥1
∥ (Ψn,Ψn+1)T0 ∥1

< REL_TOL , (61)

where, throughout this work, REL_TOL = 10−3 for the pseudo-time-stepping. In addi-481

tion, there is one intermediate stopping criterion: when the mesh is moved according to482

the weighted averaging defined by (55)/(56), the node positions are fixed when either483

rel_tol ≤ REL_TOL_MOVE is satisfied or a specified number of iterations (Nmove) has484

been reached.485

2.4.2. Parameter Choices486

The mesh movement algorithm has introduced a number of free parameters which487

can be modified to control the mesh movement. The optimal choices will be problem-488

dependent, as is widely observed (see, for example, [11, 18] and the references therein),489

but varying each parameter affects the approximation in a particular way.490

• In Equation (59) α governs the strength of the effect of local features. Increasing491

its value will increase the resolution of the mesh where the first or second derivative492

of the solution is relatively high.493

• In Equation (60) β and γ govern the extent of the region where the mesh is affected494

by local features. Increasing their values reduces the size of the region over which495

the mesh is adapted. The adaptation becomes a pure smoothing step if β, γ ≥ 1.496
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• The larger the values of Ninit and Nmove, the maximum numbers of mesh movement497

iterations allowed at each stage, the closer the initial mesh and the meshes at each498

time-step get to equidistributing the monitor function. Reducing REL_TOL_MOVE499

(when it is active) has a similar effect.500

• The smoothness with which the mesh changes resolution from one region to another501

can be adjusted using the relaxation parameter µ in Equation (56). Increasing502

its value in the smoothing iteration (where WE ≡ 1) will tend to make the mesh503

elements more uniform in size.504

3. Numerical Results505

For all computations the CFL specified for the time-stepping is relative to the past-506

shield condition, i.e. no residual can be distributed backwards in time,507

k+
i,n = 0 ∀i or K+

i,n = 0 ∀i , (62)

for scalar equations and systems of equations, respectively. The CFL specified for the508

pseudo-time-stepping, CFLτ , is relative to the maximum pseudo-time-step size specified,509

i.e. (29) or (46), depending on the system being solved. In all cases, only l2 estimates of510

the errors are shown: typically adapting the mesh shows greater benefits for the l∞ norm,511

which typically selects a node in the region where the mesh resolution has been increased,512

but less benefits for the l1 norm which includes more significant contributions from nodes513

where the mesh resolution has been decreased.514

3.1. Scalar Advection515

In this section we consider the scalar conservation law (1) with f = au. For the test516

case studied here, a varies linearly in space with ∇ · a = 0, so the conservation law is517

equivalent to the advection equation,518

∂u

∂t
+ a ·∇u = 0 , (63)

with u specified on inflow boundaries.519

3.1.1. Circular Advection520

This test case considers advection of a smooth (C3) initial profile through the domain521

Ω = [−1, 1]× [−1, 1] with velocity a = (−y, x). The exact time-dependent solution profile522

is given by523

u(x, y, t) =

{

cos4(1.25πr) if r < 0.4 ,

0 otherwise ,
(64)

in which r =
√

(x− xc)2 + (y − yc)2 is the radius of the non-zero region, xc = 0.5 sin(t−524

0.5π) and yc = 0.5 cos(t−0.5π). The initial conditions are given at t = 0 and the boundary525

conditions were set to u(x, y, t) = 0 on the inflow sections of the boundary.526

The accuracy and efficiency of the simulations were assessed for a sequence of fixed,527

uniform, unstructured triangular meshes with characteristic mesh sizes h = 1
5 ,

1
10 ,

1
20 ,528

1
40 ,

1
80 . These were also used as the initial meshes for simulations carried out using the529
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adaptive procedure described in Section 2.4 and, to demonstrate the robustness of the530

space-time residual distribution algorithm on moving meshes, imposing movement on531

each mesh node using532

x = X + 0.1 sin(2πX) sin(πY ) sin(t) ,

y = Y + 0.2 sin(2πX) sin(πY ) sin(2t) ,
(65)

in which X = (X, Y ) represents the initial (reference) coordinates. At t = 2π, the end533

time for these numerical experiments, the mesh nodes return to their original positions.534

The accuracy and efficiency of the approximations obtained using the STB scheme535

are illustrated in Figure 2. The mesh movement used to improve the fit to the initial536

conditions is included in the cpu times. Results are shown for different adaptive strategies537

for deciding when to terminate the mesh movement iterations within each time-step:538

after a fixed number of iterations, Nmove = 5, 10 or 20 in this case; or after the space-539

time residual norm has dropped below a given tolerance, REL_TOL_MOVE = 10−1. In all540

adaptive cases the initial mesh is created by applying Ninit = 200 iterations of the mesh541

movement algorithm to the fixed mesh, the monitor function parameters are chosen to be542

α = 100, β = γ = 0.2, and the relaxation parameter for the mesh smoothing was µ = 0.5.543

These values have been chosen to obtain an efficient adaptive strategy for a broad range544

of mesh sizes: they are not chosen to provide the most accurate approximations. For the545

time-stepping, CFL = 2.0 and CFLτ = 0.9.546
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Figure 2: Comparision of accuracy and efficiency for circular advection (t = 2π), using the STB scheme
on fixed meshes (blue circles, solid line), adapted meshes (green or empty symbols, dashed line) and
meshes moved according to (65) (red symbols, solid line).

The same CFL is chosen for the time-stepping in both the fixed and moving mesh547

simulations. CFL = 2 is close to the optimal value for the efficiency of the fixed mesh548

computations [10]: fewer time-steps are required if the CFL is increased further, but the549

overall computation time decreases very little because the magnitude of the upper limit550

on the pseudo-time-step, Equation (29), is inversely proportional to the time-step, so551

the total number of pseudo-time-steps remains roughly constant. Furthermore, the error552
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starts to increase, so running the adaptive computations at a larger CFL (e.g. using the553

same time-step as the fixed mesh instead of the same CFL) doesn’t necessarily improve554

efficiency.555

Each of the adaptive meshing strategies provides more accurate approximations than556

the corresponding fixed mesh. The errors can be reduced further by increasing Nmove557

but the rate at which it decreases is outweighed by the additional time it takes for the558

computations to run, so the results are not presented here. The order of accuracy on the559

moving meshes remains similar to that on the fixed meshes.560

Using between 10 and 20 mesh movement iterations per time-step seems to be the561

most efficient adaptive strategy in this case. At the finer mesh resolutions it consistently562

provides approximately a 30% reduction in error for a given cpu time. Adapting the563

meshes locally reduces the element size where the solution is non-zero to provide smaller564

errors but, since the CFL is fixed, the time-step sizes will also be reduced if the mesh565

movement increases the resolution in regions of high flow velocity, so more time-steps may566

be required. Table 1 suggests that is not the case here (the fastest flow is at the corners567

of the square domain) and that the mesh movement has a beneficial effect on the iterative568

convergence rates of the pseudo-time-stepping. However, each mesh movement iteration569

requires about 3 times as much cpu time as each residual distribution step (largely due570

to the expense of computing the weights and the checks for mesh tangling) so overall cpu571

times are not often reduced. As noted previously, increasing the CFL does not improve572

the efficiency.573

Movement #ts #pts #pts/#ts #move cpu time (s) l2 error
Fixed 407 24950 61.30 0 61.91 1.983× 10−2

Nmove = 5 385 16204 42.09 1925 52.04 1.354× 10−2

Nmove = 10 390 15615 40.04 3900 60.70 1.219× 10−2

Nmove = 20 403 17855 44.31 8060 87.07 1.096× 10−2

REL_TOL_MOVE = 10−1 383 16820 43.92 1148 50.32 1.491× 10−2

Table 1: Comparison of numbers of time-steps (#ts), numbers of pseudo-time-steps (#pts), number of
mesh movement iterations (#move) and runtimes for fixed and adapted meshes for the circular advection
test case on the mesh with h = 1

40
in the fixed case using the STB scheme.

The node velocities and the mesh in the bottom-right quadrant of the domain at t = π
4 ,574

for an adaptive strategy with 20 mesh movement iterations per time-step, are shown on575

the left in Figure 3. Ideally, the mesh would move with the advection velocity, in which576

case the initial profile would be preserved by our scheme to machine accuracy. Instead577

the nodes are continually being recruited at the leading edge of the moving profile and578

discarded at the trailing edge in order to retain high resolution where the solution is579

non-zero: the mesh inside this region moves very little. The right-hand plots in Figure580

3 show the node velocities and mesh obtained at t = π
4 when Ninit = 5000 and Nmove =581

500, which approaches a situation where the monitor function is equidistributed (subject582

to smoothing) at each time-step. This simulation has a block of mesh moving in the583

approximate direction of the underlying advection, for which the activity in front of and584

behind the non-zero region is much reduced. On closer inspection, the circle of higher585

resolution mesh contains nodes moving at a similar velocity and in a similar direction to586
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each other, a rather different pattern to the actual advection velocity, (−y, x). Therefore587

the method does not benefit from increased accuracy due to mesh nodes following the flow588

(something that can happen when methods of this type are applied in one dimension) and589

the error on the mesh shown on the right-hand side of Figure 3 is slightly higher: it also590

takes about 18 times as long to run.591
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Figure 3: Comparision of node velocities (top) and meshes (bottom) in the bottom right quadrant of the
computational domain at t = π

4
for circular advection, using the STB scheme with Nmove = 20 (left) and

Nmove = 500 (right).

A single iteration of the STB scheme for a scalar equation requires little computational592

effort, so mesh movement iterations have a relatively significant effect on the overall593

computation time. It is worth noting though, that the mesh movement should tend to be594

more beneficial in 3D: second-order schemes, such as the ones considered here, typically595

23



require 16 times as much work to reduce the error by a factor of 4 using uniform refinement596

in 3D, whereas it only requires 8 times as much work to reduce the error by the same597

amount in 2D. One might expect the mesh movement, which does not increase the size of598

the system to solve, to have similar cost-benefit ratios in both 2D and 3D, so the efficiency599

of the adaptive approach should scale much better in 3D relative to uniform refinement600

(assuming that the same error reduction can be achieved).601

Figure 4 shows the effect of switching between the approximate and exact quadrature602

rules proposed for evaluating the flow sensors in (18) and (19). The exact quadrature603

(Simpson’s rule) is marginally the more efficient of the two strategies and is the one which604

has been used to obtain all of the other numerical results shown in this paper.605
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Figure 4: Comparision of accuracy and efficiency for circular advection, using the STB scheme on fixed
meshes (blue circles, solid line) and adapted meshes (green or empty symbols, dashed line). Results are
shown for when the trapezoid and Simpson rules are used to compute the flow sensors, Equations (19)
and (18), respectively.

3.2. Shallow Water Flow606

In this section we consider simulations of the two-dimensional shallow water equations607

with variable bed topography. The mesh is adapted to the free surface level, not the608

depth, so the bed topography only influences the mesh through its effects on the flow.609

Although we do not present the results of the simulations, we note here that it was610

confirmed that all of the mesh movement strategies employed preserved the “lake at rest”611

solution on a variable bed to machine precision. For all shallow water simulations, the612

largest value of the blending parameter, θmax
2 = maxΘ2 (where Θ2 is defined in Equation613

(41)), is applied to all variables of the residual in order to achieve an additional stabilising614

effect. Furthermore, to improve iterative convergence, its value is frozen after the first615

pseudo-time-step in each time-step.616

3.2.1. Travelling Vortex617

To evaluate the accuracy and (mesh) convergence properties of the STB schemes, we
simulate a travelling vortex with known exact solution [53, 51]. Given a flat bottom
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topography, the exact velocity field is expressed as u∞ + u ′, with

u ′ =

{

Γ (1 + cos(ωrc)) (yc − y, x− xc) if ωrc < π ,

(0, 0) otherwise ,

and u∞ being constant. The constant Γ is the vortex intensity parameter, (xc, yc) are the
coordinates of the centre of the vortex, rc is the distance from the centre of the vortex,
and ω is the angular wave frequency associated with the diameter of the vortex. The
water height is then given as

d(rc) = d∞ +

{

1
g

(

Γ
ω

)2
(κ(ωrc)− κ(π)) if ωrc < π ,

0 otherwise ,

with
κ(x) = 2 cos(x) + 2x sin(x) +

1

8
cos(2x) +

x

4
sin(2x) +

3

4
x2

and d∞ = 1.618

For the mesh-convergence study, we set u∞ = (6, 0), Γ = 15, ω = 4π, g = 9.80665 and619

use a sequence of five unstructured triangulations of the domain Ω = [0, 2] × [0, 1] with620

characteristic mesh sizes h = 1
10 ,

1
20 ,

1
40 ,

1
80 ,

1
160 , respectively. At the initial state the centre621

of the vortex is at (xc, yc) = (0.5, 0.5) and the time marching stops at t = 1/6, when622

(xc, yc) = (1.5, 0.5). Freestream characteristic boundary conditions are used everywhere.623

The accuracy and efficiency of the approximations obtained using the STB schemes624

are illustrated in Figure 5. Results are shown for fixed meshes and for different adaptive625

strategies for deciding when to terminate the mesh movement iterations within each time-626

step: after a fixed number of iterations, Nmove = 10, 30 or 50 in this case; or after the627

space-time residual norm has dropped below a given tolerance, REL_TOL_MOVE = 10−1.628

In all adaptive cases the initial mesh is created by applying Ninit = 500 iterations of the629

mesh movement algorithm to the fixed mesh, the monitor function parameters are chosen630

to be α = 100, β = γ = 0.05, and the relaxation parameter for the mesh smoothing was631

µ = 1.0. For the time-stepping, CFL = 4.0, close to the optimal value found for efficiency632

on fixed meshes in [10], and CFLτ = 0.3.633

In this case, the order of accuracy demonstrated on the finer meshes is slightly lower634

on the adapted meshes than on the fixed meshes. As a result, the mesh adaptation635

provides most benefit for meshes of intermediate resolution, on which improvements in636

efficiency of more than 60% can be obtained by moving the mesh. In this case, using637

30 mesh movement iterations per time-step gave the best efficiency – a higher number638

than for scalar advection, not only because the accuracy starts to deteriorate if more639

mesh movement iterations are used, but also because the computational time required for640

a single mesh movement iteration is lower relative to a single application of residual641

distribution for a nonlinear system. The total number of mesh movement iterations642

relative to the total number of pseudo-time-stepping iterations is shown in Table 2. The643

residual distribution step is about 5 times as expensive as in the scalar case, so the time644

required to move the mesh is relatively less significant. Moving the mesh also appears to645

accelerate the convergence of the pseudo-time-stepping iteration.646
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Figure 5: Comparision of accuracy and efficiency for the travelling vortex, using the STB scheme on fixed
meshes (blue circles, solid line) and adapted meshes (green or empty symbols, dashed line).

Movement #ts #pts #pts/#ts #move cpu time (s) l2 error in d
Fixed 66 7322 110.94 0 325.20 3.724× 10−3

Nmove = 10 91 8144 89.49 910 396.54 2.870× 10−3

Nmove = 30 103 8851 85.93 3090 461.50 2.044× 10−3

Nmove = 50 104 10036 96.50 5200 548.87 2.073× 10−3

REL_TOL_MOVE = 10−1 103 8539 82.90 2622 439.72 2.124× 10−3

Table 2: Comparison of numbers of time-steps (#ts), numbers of pseudo-time-steps (#pts), number of
mesh movement iterations (#move) and runtimes for fixed and adapted meshes for the travelling vortex
test case on the mesh with h = 1

80
in the fixed case using the STB scheme.

3.2.2. Small Perturbation of a Lake at Rest647

In order to test the adaptive method in a situation with smoothly varying bed topog-648

raphy, this test case considers the flow of a small perturbation to the lake at rest solution649

over an elliptic exponential bump [54]. The computational domain is given by [0, 2]× [0, 1]650

with bed topography651

b(x, y) = 0.8 exp(−5(x− 0.9)2 − 50(y − 0.5)2) (66)

and initial conditions,652

η(x, y) =

{

1.01 if 0.05 < x < 0.15 ,

1 otherwise ,
u ≡ v ≡ 0 . (67)

Solid-wall boundary conditions are used at the top and bottom boundaries while free-flow653

boundary conditions are imposed at the remaining boundaries.654

Numerical results obtained using a mesh with h ≈ 0.02 (with 5953 nodes and 17556655

elements) are presented in Figures 6 and 7. Snapshots of the fluid and mesh velocities656
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are shown in Figure 8. In all adaptive cases the initial mesh is created by applying657

Ninit = 1000 iterations of the mesh movement algorithm to the fixed mesh, the monitor658

function parameters are chosen to be α = 100, β = γ = 0.2, and the relaxation parameter659

for the mesh smoothing was µ = 0.7. For the time-stepping, CFL = 4.0 and CFLτ = 0.9.660

Figure 6: Comparison of isolines of free surface level η for the shallow water equations with a variable
bed and a perturbation to the lake at rest equilibrium, using the STB scheme on a fixed mesh (top) and
an adapted mesh with Nmove = 20 (bottom): t = 0.24 (left), t = 0.48 (right). The interval between
contours is 0.0005 and the isolines shown are in the ranges [0.99925, 1.0725] (top left), [0.99575, 1.00275]
(top right), [0.99825, 1.00975] (bottom left), [0.99325, 1.00325] (bottom right).

The mesh adaptation clearly resolves the features of the flow much more sharply. The661

adapted solution is compared with approximations obtained on this fixed mesh and a finer662

fixed mesh (h ≈ 0.01, giving 23515 nodes and 69942 elements) in Figure 9. Two differ-663

ent adaptive strategies are used, in which a fixed number of mesh movement iterations,664

Nmove = 10 or 20, are applied within each time-step. Adapting the mesh clearly improves665

the approximation, giving estimates of local maxima and minima which are close to those666

obtained on the fixed fine mesh for all regions except the small peak just downstream of667

the main trough at t = 0.48. The improvements are greater when 20 mesh movement668

iterations are used, but this is at the expense of computational time. The efficiency is illus-669

trated in Table 3, which shows maximal and minimal values for different meshes alongside670

the runtimes. These results include an intermediate mesh, for which h ≈ 0.01
√
2 and the671

runtime is similar to those for the adapted coarse mesh. Both adapted coarse meshes give672

better maximal and minimal value approximations than the intermediate mesh for either673

a similar (Nmove = 20) or significantly lower (Nmove = 10) runtime.674
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Figure 7: Adapted meshes with Nmove = 20 for the shallow water equations with a variable bed and a
perturbation to the lake at rest equilibrium, obtained using the STB scheme at times t = 0.24 (left),
t = 0.48 (right).

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Figure 8: Fluid (left) and mesh (right) velocities obtained using the STB scheme on an adapted mesh
with Nmove = 20, for a perturbation to the lake at rest equilibrium, at time t = 0.48.

Mesh # nodes Movement cpu time (s) min(η) max(η)
Coarse 5953 None 47.18 0.995548 1.003152

Nmove = 10 82.74 0.993329 1.003473
Nmove = 20 140.04 0.992780 1.003531

Intermediate 11924 None 139.67 0.993751 1.003426
Fine 23515 None 381.76 0.992074 1.003663

Table 3: Comparison of maximum/minimum values of η and runtimes for fixed and adapted meshes for
the perturbed lake at rest when t = 0.48 using the STB scheme.
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Figure 9: Comparison of profiles of free surface level η along y = 0.5 for the shallow water equations with
a variable bed and a perturbation to the lake at rest equilibrium, using the STB scheme on coarse and
fine meshes, both fixed and adapted, at times t = 0.24 (top) and t = 0.48 (bottom). Results are shown
for 10 (left) and 20 (right) mesh movement iterations per time-step. The thick black line illustrates the
shape of the bed topography: this is not drawn to scale.
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3.2.3. Circular Dam-Break over a Non-Smooth Bed675

The final test case has been chosen to illustrate the ability of the moving mesh to fol-676

low sharp features which interact in geometrically complex ways. It simulates an initially677

radially-symmetric dam-break over a discontinuous bed topography [10]. The computa-678

tional domain is given by [0, 30]× [0, 30] with bed topography679

b(x, y) =

{

0 if x+ y < 30 ,

0.2 otherwise ,
(68)

and initial conditions,680

η(x, y) =

{

1.461837 if r < 15 ,

0.308732 otherwise ,
u ≡ v ≡ 0 , (69)

where r =
√

x2 + y2 is the radius of the dam. Solid-wall boundary conditions are used at681

the left and bottom boundaries while characteristic boundary conditions are imposed at682

the remaining boundaries. The characteristic mesh size is h ≈ 0.3 (giving a mesh of 11831683

nodes and 35090 elements). The simulation follows the wave hitting the underwater wall,684

then partially reflecting from it and partially moving forward and exiting the domain.685

There is also a stationary shock wave along the discontinuity of the bed, which slowly686

weakens as time progresses.687

In all adaptive cases the initial mesh is created by applying Ninit = 1000 iterations688

of the mesh movement algorithm to the fixed mesh, the monitor function parameters are689

chosen to be α = 100, β = γ = 0.05, and the relaxation parameter for the mesh smoothing690

was µ = 0.7. A fixed number of mesh movement iterations, Nmove = 20, are applied within691

each time-step. For the time-stepping, CFL = 2.0 and CFLτ = 0.9.692

Snapshots of the numerical results on fixed and adapted meshes are compared in Figure693

10. Once more, the adapted meshes (shown in Figure 11) capture the flow features much694

more sharply, following them throughout the simulation without distorting their shapes.695

The mesh movement parameters (α, β, γ, µ, Ninit and Nmove) can be adjusted to fit more696

or less strongly to these features, though it should always be borne in mind that reducing697

the element size increases the number of time-steps required to run at the same CFL and698

increasing the number of mesh movement iterations per time-step will typically increase699

the overall number of pseudo-time-stepping iterations that are required.700

We also note that the combination of the monitor choice and the application of smooth-701

ing produces meshes which tend to align with lower-dimensional features such as shocks,702

but vary smoothly throughout the domain. In fact, away from the discontinuities, the703

choices made for β and γ ensure that the mesh tends towards a uniform distribution of704

nodes. This combines well with the STB residual distribution schemes which can capture705

these discontinuities relatively sharply, without inducing spurious oscillations. Without706

the smoothing the meshes for all of the test cases would be of much lower quality and707

might be better paired with a more grid-insensitive approach to approximating the PDE.708

4. Concluding Remarks and Outlook709

In this paper we have described the generalisation of a space-time discontinuous resid-710

ual distribution (STDRD) scheme [10] to moving meshes. Within the STDRD framework711
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Figure 10: Comparison of isolines of free surface level η for the shallow water equations with a discontin-
uous bed, using the STB scheme on a fixed mesh (left) and an adapted mesh (right): t = 3 (top), t = 9
(middle), t = 15 (bottom). The interval between contours is 0.04 and the isolines shown are in the ranges
[0.32, 1.44] (top), [0.2, 0.64] (middle), [0.08, 0.4] (bottom).
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Figure 11: Adapted meshes for the shallow water equations with a discontinuous bed at times t = 0 (top
left), t = 3 (top right), t = 9 (bottom left), t = 15 (bottom right). The mesh is shaded according to the
local height of the free surface η.
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this entails the design of schemes for distributing the residual on distorted space-time712

prisms, and Section 2 describes how schemes developed for prisms aligned with time can713

be extended to allow the spatial mesh to change between time-steps, while retaining the714

order of accuracy and positivity properties of the original distribution. Furthermore,715

the modified schemes inherently guarantee that the mesh movement satisfies a discrete716

geometric conservation law (DGCL), so adapting the mesh does not disturb a constant717

solution.718

The new algorithm is applied to the two-dimensional scalar advection equation and719

the two-dimensional shallow water equations with variable bed topography. In the latter720

case, the schemes are designed so that the C-property is satisfied, i.e. still, flat water is721

maintained as a steady-state solution over a variable bed even when the mesh is being722

moved. The STDRD schemes are combined with a simple mesh adaptation algorithm to723

demonstrate that (i) more accurate approximations can be obtained by moving the mesh724

to follow features of the flow and (ii) there is the potential for the mesh movement to725

reduce the computational time required to provide approximations to within a specified726

level of accuracy.727

The numerical results show that the mesh movement does improve the accuracy of728

the approximations compared to fixed, uniform meshes with the same number of nodes729

and connectivity. The accuracy and the efficiency of the computations both depend730

on the choices of a number of user-specified parameters. It is not yet clear what the731

optimal choices are, but it has been shown that moving the mesh can be beneficial, with732

reductions in cpu times of up to 60% achieved, compared to fixed mesh computations with733

the same accuracy. However in some cases the reduction in error is counterbalanced by the734

additional computational effort required and mesh movement is not currently effective.735

This work has demonstrated that mesh movement can be used to improve the efficiency736

of STDRD schemes, without losing any of their fixed-mesh properties, even with a simple737

mesh movement strategy. However, there remain many areas in which both the fixed and738

moving mesh algorithms might be improved.739

• The mesh movement strategy is very simple. More sophisticated approaches, such as740

the nonlinear iteration described in [11], might allow for a reduction in the number741

of mesh movement iterations required relative to the number of pseudo-time-steps.742

In particular, a much faster algorithm for equidistributing the initial mesh could be743

found.744

• The limit on the pseudo-time-step is inversely proportional to the size of the time-745

step, so using a larger CFL (which is possible due to the unconditional stability of746

the STDRD schemes) on the adapted mesh does not tend to decrease the overall747

workload. A sophisticated nonlinear solver, for which the convergence rate was748

independent of the time-step, would improve efficiency on both fixed and adapted749

meshes.750

• We would expect the mesh movement to have greater benefits for more complex751

systems of nonlinear equations (for which the expense of residual distribution is752

higher relative to the mesh movement) and in three space dimensions (where it753

requires more work to reduce the error by the same amount using uniform mesh754
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refinement). These are applications which should be investigated, particularly in755

situations where anisotropic mesh refinement is likely to be beneficial.756

• Moving meshes would naturally be appropriate for moving boundary problems. In757

the context of the shallow water equations it would be of interest to consider prob-758

lems with wetting and drying.759

• Moving the mesh might affect the best choice of blending function to use in the760

STB scheme. There was no clear pattern visible in the components of Θ2 in (41)761

generated by the test cases shown in this paper, so one possibility might be to use762

machine learning techniques to determine an appropriate sensor.763

Even with these improvements, there will remain situations in which it is not appropriate764

to apply mesh movement and hp-refinement will have more effect. However, it is likely to765

be beneficial in situations where the accuracy with which the quantities of interest can be766

predicted depends on the ability of the method to track and align the mesh with sharp767

local features.768
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Appendix A. Proof of the C-property771

Proposition772

The space-time element residuals of the STDRD schemes described in this paper on moving773

meshes satisfy774

ΨE + ΦEt
+ Φb

Et
= 0 (A.1)

when V = [η, du, dv]T = [const, 0, 0]T and775

Φb
Et

=
∆t

2

(

gd
n+

2

∑

i∈E

[

0
bn

+

i nn+

i

]

+
gd

(n+1)−

2

∑

i∈E

[

0

b(n+1)−

i n
(n+1)−

i

]

)

. (A.2)

Hence, the STN, STLDA and STB schemes based on the use of V all satisfy the C-property776

on moving meshes.777

Proof778

The superscripts ·n−

, ·n+

and ·(n+1)− are used explicitly here for completeness, although779

the ± are suppressed in the main body of the paper where the meaning should be clear780

from the context.781

First note that ΨE = 0 when V n+

= V n−

, and there is no contribution from the source782

term when integrating across the temporal discontinuity, so we need only consider the783

balance within the space-time element. Now, when u = v = 0,784

ΦEt
+ Φb

Et
=

∫

En+1

[

d(n+1)−

0

]

dΩ−
∫

En

[

dn
+

0

]

dΩ

+

tn+1
∫

tn

∫

∂E(t)

[

−dv · n̂
gd2

2 n̂

]

dΓ dt−
tn+1
∫

tn

∫

E(t)

[

0
gd∇b

]

dΩ dt , (A.3)

in which n̂ is the unit outward-pointing normal to ∂E(t).785

Mass balance: Since ∂b
∂t

= 0 in the exact case, integrating the Reynolds transport786

theorem for the bed level b on a moving mesh over a single time-step gives787

∫

En+1

b(n+1)− dΩ−
∫

En

bn
+

dΩ−
tn+1
∫

tn

∫

∂E(t)

bv · n̂ dΓ = 0 , (A.4)

so the residual for the mass balance equation in (A.3) can be written as788

∫

En+1

η(n+1)− dΩ−
∫

En

ηn
+

dΩ−
tn+1
∫

tn

∫

∂E(t)

ηv · n̂ dΓ (A.5)
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≈ |En+1| η(n+1)− − |En| ηn+ − ∆t

2

⎛

⎜

⎝

∫

∂E(tn+1)

η(n+1)−v · n̂n+1 dΓ+

∫

∂E(tn)

ηn
+

v · n̂n dΓ

⎞

⎟

⎠
,

in which we have used the approximation to the residual adopted in the STDRD schemes.789

Now, since the nodal velocities vi are assumed constant within each time-step, it follows790

from geometric arguments applied to the space-time element that791

|En+1|− |En|− ∆t

2

∑

i∈E

(

vi · nn+1
i + vi · nn

i

)

≡ 0 . (A.6)

It immediately follows that substituting η(n+1)− = ηn
+

= const in to (A.5) gives zero792

residual in the mass balance equation.793

Momentum balance: Our STDRD schemes evaluate the residual using Simpson’s rule794

to approximate the surface integrals. This is exact for piecewise linear d, so795

∫

∂E(t)

gd2

2
n̂ dΓ = −

∑

i∈E

gd

2
dini . (A.7)

This is clearly gives zero total residual in the momentum balance equations when η =796

d + b = const is substituted in to (A.3) and the source residual is approximated at any797

given time using798

∫

E(t)

gd∇b dΩ = −
∑

i∈E

gd

2
bini , (A.8)

which is exact for piecewise linear d and b.799

Full system: It follows from the arguments above that η(n+1)− = ηn
+

= const gives zero800

residual in the full system, having applied the trapezoid rule in time, when801

Φb
Et

=
∆t

2

(

gd
n+

2

∑

i∈E

[

0
bn

+

i nn+

i

]

+
gd

(n+1)−

2

∑

i∈E

[

0

b(n+1)−

i n
(n+1)−

i

]

)

. (A.9)

Therefore [η, du, dv]T = [const, 0, 0]T is a solution to the discrete problem. Moreover, since802

the pseudo-time-stepping is initialised with (V n+

)0 = (V (n+1)−)0 = V n−

= [const, 0, 0]T ,803

it follows that804

(ΨEt
+ ΦEt

+ Φb
Et
)0 = 0 (A.10)

and the total residual remains zero for any subsequent pseudo-time-steps. Hence, the C-805

property is satisfied for any linearity preserving STDRD scheme, such as STLDA. Finally,806

from [10], the residuals for the STN scheme are807

ΦN
i,n = K+

i,nNt

∑

j∈E

K+
j,n

(

V n+

i − V n+

j

)

+ K+
i,nNt

∑

j∈E

K+
j,n+1

(

V n+

i − V (n+1)−

j

)

+ ΦLDA
i,n ,
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ΦN
i,n+1 = K+

i,n+1Nt

∑

j∈E

K+
j,n

(

V n+1
i − V n+

j

)

+ K+
i,n+1Nt

∑

j∈E

K+
j,n+1

(

V (n+1)−

i − V (n+1)−

j

)

+ ΦLDA
i,n+1 . (A.11)

These residuals are also clearly zero for (V n+

)0 = (V (n+1)−)0 = V n−

= [const, 0, 0]T , so808

the STN scheme (and hence the STB scheme) also satisfies the C-property.809
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Appendix B. Proof of the Discrete Maximum Principle810

Proposition:811

The space-time N scheme (24) on moving meshes verifies the discrete maximum principle,812

un−

min = min
j

un−

j ≤ un+

i , u(n+1)−

i ≤ max
j

un−

j = un−

max ∀i , (B.1)

for any time-step ∆t > 0.813

Proof814

This proof follows closely the structure of the proof of Proposition 3.8 in [2].815

First write out the space-time N scheme with discontinuities in time in full, by substituting816

(24), (17) and (13) into (14), to give817

|Sn
i |(un+

i − un−

i )

+
∑

E∈Di

[

−
∑

j∈E

k+
i,nNtk

−
j,n(u

n+

i − un+

j )−
∑

j∈E

k+
i,nNtk

−
j,n+1(u

n+

i − u(n+1)−

j )

]

= 0

∑

E∈Di

[

−
∑

j∈E

k+
i,n+1Ntk

−
j,n(u

(n+1)−

i − un+

j )−
∑

j∈E

k+
i,n+1Ntk

−
j,n+1(u

(n+1)−

i − u(n+1)−

j )

]

= 0 .

(B.2)
in which Di = ∪i∈EE, k± and Nt are defined by (21) and (18) or (19), and |Sn

i | =818

1
3

∑

E∈Di
|En|. This system of equations can be written in the form AUnew = BUold:819

[

An+,n+ An+,(n+1)−

A(n+1)−,n+ A(n+1)−,(n+1)−

] [

Un+

U (n+1)−

]

=

[

Bn−

0

]

[

Un−

]

(B.3)
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in which U represents a vector of nodal values of u at the specified time level and820

(An+,n+)ii = |Sn
i |−

∑

E∈Di

[

∑

j∈E,j≠i

k+
i,nNtk

−
j,n +

∑

j∈E

k+
i,nNtk

−
j,n+1

]

∀ i

(An+,n+)ij =
∑

E∈Di|j∈E

k+
i,nNtk

−
j,n ∀ i, j | i ≠ j

(An+,(n+1)−)ij =
∑

E∈Di|j∈E

k+
i,nNtk

−
j,n+1 ∀ i, j

(A(n+1)− ,n+)ij =
∑

E∈Di|j∈E

k+
i,n+1Ntk

−
j,n ∀ i, j

(A(n+1)−,(n+1)−)ij =
∑

E∈Di|j∈E

k+
i,n+1Ntk

−
j,n+1 ∀ i, j | i ≠ j

(A(n+1)−,(n+1)−)ii = −
∑

E∈Di

[

∑

j∈E

k+
i,n+1Ntk

−
j,n +

∑

j∈E,j≠i

k+
i,n+1Ntk

−
j,n+1

]

∀ i

(Bn−)ii = |Sn
i | ∀ i

(Bn−)ij = 0 ∀ i, j | i ≠ j .
(B.4)

The majority of the entries in A will be zero because the set {E ∈ Di|j ∈ E} is empty821

unless i and j are vertices of a common mesh element. The indices i and j both run from822

1 to the total number of unknowns. First note that823

(An+,n+)ii ≥ 0 (A(n+1)−,(n+1)−)ii ≥ 0 ∀ i
(An+,n+)ij ≤ 0 (A(n+1)−,(n+1)−)ij ≤ 0 ∀ i, j | i ≠ j

(An+,(n+1)−)ij ≤ 0 (A(n+1)−,n+)ij ≤ 0 ∀ i, j ,
(B.5)

since k+, Nt ≥ 0 and k− ≤ 0. Moreover,824

|(An+,n+)ii|−
∑

j∈Di|j≠i

|(An+,n+)ij |−
∑

j∈Di

|(An+,(n+1)−)ij | = |Sn
i | > 0

|(A(n+1)−,(n+1)−)ii|−
∑

j∈Di|j≠i

|(A(n+1)−,(n+1)−)ij |−
∑

j∈Di

|(A(n+1)−,n+)ij | = 0 .
(B.6)

Therefore, the matrix A is diagonally dominant for any time-step and any mesh. Hence,825

because of the conditions in (B.5), A is an M-matrix, so A is invertible and A−1 is positive,826

i.e. (A−1)ij ≥ 0 ∀ i, j. Note also that (Bn−)ij ≥ 0 ∀ i, j for any time-step and any mesh.827

Consider now the vector Umin, which has the same length as U (n+1)− , Un+

and Un−

, but828

with elements all equal to un−

min. It follows from (Bn−)ij ≥ 0 ∀ i, j and un−

i ≥ un−

min ∀ i829

that830

(Bn−Un−

)i ≥ (Bn−Umin)i ∀ i . (B.7)

This can be manipulated to give831

(Bn−Umin)i =
∑

j∈Di

(Bn−)iju
n−

min = |Sn
i |un−

min , (B.8)
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using the definitions given in (B.4). Summing the elements in the rows of the top half of832

A gives833
∑

j∈Di

(An+,n+)ij +
∑

j∈Di

(An+,(n+1)−)ij = |Sn
i | ∀i , (B.9)

so, from (B.8),834

(Bn−Umin)i = |Sn
i |un−

min =
∑

j∈Di

(An+,n+)iju
n−

min +
∑

j∈Di

(An+,(n+1)−)iju
n−

min

= An+,n+Umin + An+,(n+1)−Umin .

(B.10)

Now, (B.3) gives835

An+,n+Un+

+ An+,(n+1)−U
(n+1)− = Bn−Un−

, (B.11)

so it follows from (B.7), (B.10) and (B.11) that836

(An+,n+Un+

+ An+,(n+1)−U
(n+1)−)i ≥ (An+,n+Umin + An+,(n+1)−Umin)i ∀i . (B.12)

Summing elements in the rows of the bottom half of A gives837

∑

j∈Di

(A(n+1)−,n+)ij +
∑

j∈Di

(A(n+1)−,(n+1)−)ij = 0 ∀i , (B.13)

from which it follows that838

(A(n+1)−,(n+1)−Umin + A(n+1)−,n+Umin)i

=
∑

j∈Di

(A(n+1)−,n+)iju
n−

min +
∑

j∈Di

(A(n+1)−,(n+1)−)iju
n−

min = 0 ∀i , (B.14)

so, from (B.7) and (B.14),839

(A(n+1)−,n+Un+

+A(n+1)−,(n+1)−U
(n+1)−)i = 0 = (A(n+1)−,n+Umin+A(n+1)−,(n+1)−Umin)i ∀i .

(B.15)
Putting together (B.12) and (B.15),840

[

An+,n+ An+,(n+1)−

A(n+1)−,n+ A(n+1)− ,(n+1)−

] [

Un+

U (n+1)−

]

≥
[

An+,n+ An+,(n+1)−

A(n+1)−,n+ A(n+1)−,(n+1)−

] [

Umin

Umin

]

, (B.16)

in the sense that the inequality holds for each row of the system and, since A−1 exists841

and is positive, we can premultiply both sides by A−1 to get842

[

Un+

U (n+1)−

]

≥
[

Umin

Umin

]

. (B.17)

The positivity of A−1 therefore implies that843

un−

min = min
j

un−

j ≤ un+

i , u(n+1)−

i ∀i . (B.18)

A similar argument can be used to prove that844

un−

max = max
j

un−

j ≥ un+

i , u(n+1)−

i ∀i . (B.19)

845

We note the following.846
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• This proof holds for any time-step and any meshes at the old and new time levels.847

• This is a global condition, not a local condition. It therefore prohibits the creation848

of new global extrema, but new local extrema may appear.849

• A similar proof can be followed for the N scheme without the discontinuity in time850

but now a consistency condition, ki,n ≤ 0 ∀i in every element, must be adhered to851

(the past-shield condition). This places a restriction on the time-step.852

• Note that, in the context of space-time residual distribution schemes, the CFL condi-853

tion is defined in terms of the past-shield condition for the element residuals (which,854

if satisfied, automatically implies that un+

i = un−

i ∀i, even when the approximation855

is allowed to be discontinuous in time), i.e. from Equation (19)856

ki,n ≤ 0 ⇒ −∆t

4
(an − vi) · nn

i −
|En|
3

≤ 0 . (B.20)

This imposes a limit on ∆t which is different to the positivity condition for the857

pseudo-time-stepping used to find a steady state scheme or to solve the space-time858

system.859
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Appendix C. Proof of the Consistency of Inflow Parameters for Residual Dis-860

tribution Schemes861

Proposition:862

Under the definitions given by (18) or (19)863

∑

i∈E

ki,n +
∑

i∈E

ki,n+1 = 0 . (C.1)

Proof864

First note that it follows immediately from (19) that865

∑

i∈E

ki,n =

(

∑

i∈E

∆t

4
vi · nn

i

)

− |En| ,

∑

i∈E

ki,n+1 =

(

∑

i∈E

∆t

4
vi · nn+1

i

)

+ |En+1| , (C.2)

for any time level, since
∑

i∈E ni = 0. Furthermore, the definitions of the inflow parame-866

ters obtained using Simpson’s rule, given in (18), also lead to (C.2) because867

∑

i∈E

((vj − vi) · nk + (vk − vi) · nj) =
∑

i∈E

(vj − vi) · nk +
∑

i∈E

(vk − vi) · nj

=
∑

i∈E

(vj − vi) · nk +
∑

i∈E

(vi − vj) · nk

= 0

(C.3)

This assumes that for vertex i of the element, vertices j and k are the other vertices,868

labelled anticlockwise. It therefore follows that, in both cases,869

∑

i∈E

ki,n +
∑

i∈E

ki,n+1 = |En+1|− |En|+ ∆t

4

(

∑

i∈E

vi · nn
i +

∑

i∈E

vi · nn+1
i

)

. (C.4)

Now, by definition,870

|En| = 1

2
(xj − xi) ∧ (xk − xi)

|En+1| = 1

2
((xj +∆tvj)− (xi +∆tvi)) ∧ ((xk +∆tvk)− (xi +∆tvi)) ,

(C.5)

where i is any vertex of the element and j and k are again the other vertices, labelled871
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anticlockwise, so872

|En+1|− |En| = 1

2
((xj − xi) +∆t (vj − vi)) ∧ ((xk − xi) +∆t (vk − vi))

− 1

2
(xj − xi) ∧ (xk − xi)

=
1

2
∆t (xj − xi) ∧ (vk − vi) +

1

2
∆t (vj − vi) ∧ (xk − xi)

+
1

2
∆t2 (vj − vi) ∧ (vk − vi)

=
1

2
∆t (vk − vi) ∧ (xi − xj) +

1

2
∆t (vj − vi) ∧ (xk − xi)

+
1

2
∆t2 (vj − vi) ∧ (vk − vi)

=
1

2
∆tvi ∧ (xj − xk) +

1

2
∆tvj ∧ (xk − xi) +

1

2
∆tvk ∧ (xi − xj)

+
1

2
∆t2 (vj − vi) ∧ (vk − vi)

=
∆t

2

(

∑

i∈E

vi ∧ (xj − xk)

)

+
1

2
∆t2 (vi ∧ vj + vj ∧ vk + vk ∧ vi)

(C.6)

Similar manipulation, using ni ⊥ xk − xj, leads to873

∆t

4

(

∑

i∈E

vi · nn
i +

∑

i∈E

vi · nn+1
i

)

=
∆t

4

(

∑

i∈E

vi ∧ (xk − xj) +
∑

i∈E

vi ∧ ((xk +∆tvk)− (xj +∆tvj))

)

=
∆t

4

(

∑

i∈E

vi ∧ (xk − xj) +
∑

i∈E

vi ∧ (xk − xj) +
∑

i∈E

∆tvi ∧ (vk − vj)

)

=
∆t

2

(

∑

i∈E

vi ∧ (xk − xj)

)

+
∆t2

4

(

∑

i∈E

vi ∧ (vk − vj)

)

=
∆t

2

(

∑

i∈E

vi ∧ (xk − xj)

)

− ∆t2

2
(vi ∧ vj + vj ∧ vk + vk ∧ vi)

(C.7)

Hence, substituting (C.6) and (C.7) into (C.4) gives874

∑

i∈E

ki,n +
∑

i∈E

ki,n+1 = 0 . (C.8)

875
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