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Topics of these lectures

» Introduction to Linear Programming

v

Simplex Algorithm

v

Clarkson's algorithm
Diameter: Bounds and open problems

v

v

A simplex-algorithm guided by a random walk



Complexity of linear programing
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» Linear program: Ce
max{cTz: z € R", Az < b} A€ ™", ve R™

n Q1% 254

Axelb

'\) *
e .

{m\k Sekobowe,

» Important paradigm in mathematics, computer
science, engineering . ..
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> Linear program:
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» Solvable in weakly polynomial time
(Khachiyan 79)

» Polynomial in binary encoding length of input
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Complexity of linear programing

> Linear program:

max{cTz: z € R", Az < b}

v

Solvable in weakly polynomial time
(Khachiyan 79)

Polynomial in binary encoding length of input

v

v

Weakly polynomial running time natural for
algorithms in number theory (Mansour, et al. 91)

» Seems unnatural for combinatorial problems like
linear programming



Motivation

Problem
Can linear programming be solved in
strongly polynomial time?
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Bases and vertices

3 4/
y (
Bases

» B C{1,...,m} is basis if Ag is invertible

» Basis B is feasible if unique solution z* of
Apz = bp

satisfies Az < b

» z* is a yextex of polyhedron
{z € R": Az < b}. == (awe oot

a




Feasible bases and optimal solutions

\H‘\'W\v‘}
Theorem 2
If LP max{cTz: Aa: < b} has optimal solution, then there exists optimal
vertex. i cons?
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Simplex algorithm

» Walks from vertex to vertex of polyhedron
» First described by George Dantzig in 50's

» |s a candidate for strongly polynomial time algorithm
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> Start with feasible basis. % € Lhoooes s ABwc o
» While z* not optimal but A <0) e '\'h\\: un _:"“
» Follow ray z* + pd with Ad = —e;) until new inequality 7 becomes
tight
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Termination

T
(1 D

If LP satisfies assumtions, then simplex terminates with either
1. assertion of unboundedness

2. optimal solution.
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Total unimodularity S 1]

Definition
A € {£1,0}™*" is totally unimodular if each k x k sub-determinant is '
0, +1 /
Theorem
If A is totally unimodular and b is integral, then each vertex of
{z: Az < b} is integral. —fA A-A 3 " (
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Example: Matchings in bipartite graphsl— R. \

» G = (AU B, E) bipartite 3 V-M'al\“m’:f\
» M C E matching of no two .

edges in M share an endpoint o (24
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Clarkson’s algorithm ey ¢
Axsb a4 W Con s vemds
» Randomized algorithm

» Reduces in expected polynomial time LP with m constraints to O(m)
LPs with O(n?2) constraints

Consequence

Randomized algorithm with expected strongly polynomial running time
exists if and only such an algorithm exists for LPs with O(n?) constraints.
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Quiz

» H={1,...,m}, r€ H, R€ () drawn uniformly at random

» Vg=min{s € R} -1
» What is E[|VR]|] 7
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Quiz
» H={1,...,m}, r€ H, R€ () drawn uniformly at random

» Vg=min{s € R} -1
» What is E[|Vg|] 7

Answer. (m —r)/(r+ 1)
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» For Q C H and j € H define x(Q,7) = {1 if j <min{i € @},

0 otherwise.

> BIVall = (S (1) Sremax(Ra) ) /(7)
» Onehas (1) - (m—r)=(,T1) (r+1)
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Linear Programming

YW ARy
Framework ¢c20
» Given: Set H of m linear constraints in R™ and
H ={z(1)< M |1=1,...,n} explicit upper bounds
» For G C H, z*(G) is unique max. point satisfying all h € GU H~
» Task: Computemf*(i). . ~ A

7.

Basis

B C G is called Basis of G, if z*(B) = z*(G) and for each b € B one

has z*(B — b) > z*(B). tdndfy oA v
vislehd comtv,

Lemma //

Let B be a basis of H and let G C H. One has z*(G) > z*(H) if and

only if there exists b € B with z*(G) violates b. Hun we Mnow Aok

R SO w"m’



Quiz

[T PV .g conikOmie

» Choose R € (#) uniformly at random
» Vg =4{h € H|z*(R) violates h}
» What is E[|Vg|] ?
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Quiz

» Choose R € (#) uniformly at random
» Vg =4{h € H|z*(R) violates h}
» What is E[|Vg]|] ?

Answer. at most ((m —r)/(r+ 1)) - n
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Proof

> BV&l = (Sac(y | Val) /(7)
» For Q C H and h € H define x(Q, k) = {1 if 2*(Q) violates &,

0 otherwise.

(T) E(Ve) = > > x(R,h)
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Sampling Lemma

Lemma
Let G and H (multi-)sets of constraints |H| = m and let 1 < r < m.
Then for random R € (%):

E[| Vel < n(m —r)/(r + 1),

where Vg = {h € H | 2*(G U R) violates h}.



Sampling Lemma
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Let @and H (multi-)sets of constraints |H| = m and let 1 < r < m.
Then for random R € (I:) :

E[| Vil < n(m —r)/(r +1), "
where Vg = {h € H |[z*(G U R) violates h}. Vo LPy
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Set r=[n-+/m] then

B
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Clarkson's algorithm |
(ko))
1. Input: H with |[H| =m ¢
2. 7 /M Sawmpk 3V \

3. G0 Cowskvarnly wa toleck.
c(“_: 4. REPEAT
VR e 4.1 Choose random R € ( )
e\ \'v..\]

4.2 Compute z* =z (GUR
4.3 Vg« {h € H|z" violates h}
4.4 IF |Vg| < 2vm “epganswith€ols =, 112

THEN G + GU Vg Sucessfur tewalwon.
5 UNTIL V=0 .
R # of smewsfk (ke
N

Invariant: G contains at most 2 - n - /m constraints



Example

R,G,B
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Example

R,G,B
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Analysis

In Step (4.c): E[|V]] < v/m.
Let B be optimal basis.

» Each successful iteration, a new element of B enters G

v

Thus at most n succ. it.
P(|Vg| > 24/m) < 1/2 Markow inequality
Expected number of iterations is 2n

v

\J

Clarkson 1 performs:

» Expected 2 n calls to linear programming oracle with at most
3 n4/m constraints

» Expected number of O(n? - m) arithmetic operations




Clarkson's algorithm || s s N xX*(R)

» Each h € H is assigned a multiplicity .
» In the beginning u, =1 for all h € H.

» Sample size 7 is small

» ldea: If z*(R) violates h, then multiplicity/probability is doubled

» Constraints of optimum basis become _much more likely to be drawn
next time

» We stop if R contains optimum basis



Example

R, B
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Clarkson 2
}"CH)

A
| INPUT: H, |H|=m € Cpd sTRT <mer)

2. 7+ 6. n? .
3. REPEAT:
. . -

3.1 Choose random R € (*¥)

3.2 Compute z* = z*(R)

3.3 Vg« {h € H | z* violates h}

3.4 IF u(Vg) < 1/(3W)u(H) THEN for all h € V do uy + 2pup

4. UNTIL VR =0



Lemma
B optimal basis, after| En’successfu.-" iterations (entering re-weighting step):

k/3 :
<Ime r basis B of H.
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Complexity Clarkson 2

» 28 < me*/3 implies k € O(logm)
» Expected number of O(n - log m) iterations

Clarkson 2 requires
» expected number of O(n?mlog m) arithmetic operations

» expected 6n lnm base cases with 6 - n? constraints



Combining Clarkson 1 and 2

» O(n? - m) arithmetic operations
» 2. n calls to Clarkson 2 on O(n+/m) constraints
» O(n2%,/mlogm) arithmetic operations
» O(nlog m) calls to LP-oracle with 6 - n? constraints

Linear program can be solved
» with expected O(n® - m) arithmetic operations
» and O(n?-logm) oracle calls to solve an LP with 6 - n? constraints
> in linear time if n is fixed
(Clarkson 1995)



The polynomial Hirsch conjecture

Polynomial Hirsch conjecture
Is A(n, m) bounded by a polynomial in n and m?



The polynomial Hirsch conjecture

Polynomial Hirsch conjecture
Is A(n, m) bounded by a polynomial in n and m?

Classical Hirsch conjecture

... (polytopes)
Aln,m)<m-—-n

was refuted by Santos (2010).



What is known?



What is known?

» Best known bound:
A(n, m) < ml+logn

(Kalai, Kleitman 1992)
A(n,m) < (m — n)en

(Todd 2014)



What is known?

» Best known bound:
A(n, m) < ml+logn

(Kalai, Kleitman 1992)
A(n,m) < (m — n)en

(Todd 2014)
» Huge gap between (linear) lower bound and best known upper bound



This talk ...

. is around some recent developments on this question.



This talk ...

. is around some recent developments on this question.

» Best known bounds in light of a simple abstraction

» mloe "+l (Kalai and Kleitman 1992)
» O(m) for fixed n (Larman 1970)

Almost quadratic lower bound for abstraction
(E., Hihnle, Razborov and RothvoR 2010)
Upper bound in dimension and 1/
(Bonifas, Di Summa, E., Hahnle and Niemeier 2012)

Random edge solves linear programs in time poly(n,1/6)
(E. & Vempala 2014)

v

v

v



This talk ...

. is around some recent developments on this question.

» Best known bounds in light of a simple abstraction

» mloe "+l (Kalai and Kleitman 1992)
» O(m) for fixed n (Larman 1970)

Almost quadratic lower bound for abstraction
(E., Hihnle, Razborov and RothvoR 2010)
Upper bound in dimension and 1/
(Bonifas, Di Summa, E., Hahnle and Niemeier 2012)

Random edge solves linear programs in time poly(n,1/6)
(E. & Vempala 2014)
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... and open problems around these results.



In light of a simple abstraction ...



Base Abstraction

Base abstraction is graph G = (V, E) with V C (™)) such that

» every pair u,v € V is connected by a path in G whose vertices all
contain w N wv.
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Base abstraction is graph G = (V, E) with V C (™)) such that

» every pair u,v € V is connected by a path in G whose vertices all
contain w N wv.
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Base Abstraction

Base abstraction is graph G = (V, E) with V C (™)) such that

» every pair u,v € V is connected by a path in G whose vertices all
contain w N wv.

356 236
/ /
123
456 «i» 246
/ /
124

135
145

Kalai & Kleitman (1992)
D(n, m) < ml+logn



Connected Layer Families

» Partition V into layers Lq,..., L, such that

» every set of symbols that is covered on layers 7 and 7, 1 < 7, is also
covered on each layer in between.

» Such a partition is a connected layer family, £ is its height.
» From base abstraction: L£; are vertices at distance 7 from s.



Connected Layer Families

» Partition V into layers Lq,..., L, such that

» every set of symbols that is covered on layers 7 and 7, 1 < 7, is also
covered on each layer in between.

» Such a partition is a connected layer family, £ is its height.
» From base abstraction: L£; are vertices at distance 7 from s.
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» Partition V into layers Lq,..., L, such that

» every set of symbols that is covered on layers 7 and 7, 1 < 7, is also
covered on each layer in between.

» Such a partition is a connected layer family, £ is its height.
» From base abstraction: L£; are vertices at distance 7 from s.




Upper Bound: Kalai & Kleitman

Theorem

h(n, m) < ml+logn

Proof.
We have h(n,m) < 2h(n,|m/2])+ h(n —1,m — 1).
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Upper Bound: Kalai & Kleitman

Theorem
1+log n
h(n,m)<m

Proof.
We have h(n,m) < 2h(n,|m/2])+ h(n —1,m — 1).




Upper Bound: Kalai & Kleitman

Theorem

h(n, m) < ml+logn

Proof.
We have h(n,m) < 2h(n,|m/2])+ h(n —1,m — 1).
Solve the recurrence by induction on n and m:

h(n,m)

N

2h(n,|m/2])+ h(n —1,m — 1)

13

ZZ h(z,|m/2])+ h(1,m)

2(n —1)(2n) €™ 4 m
(zn)logm

N

/AN



Linear bound in fixed dimension

» If n is fixed, then diameter is linear in m.
(Larman 1970, Barnette 1974)

Theorem
D(n,m) <21t . m—1



Lower bound

Theorem (E., Hihnle, RothvoB & Razborov 2010)
D(n, O(n)) = Q(n?/logn).



Lower bound
Theorem (E., Hihnle, RothvoB & Razborov 2010)

D(n, O(n)) = Q(n?/logn).

Theorem (Santos 2013)

Diameter of pure simplicial complexes can be exponential.
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Hahnle's Conjecture: See discussion on Polymath 3

Is h'(d,n)=d(n—1)+17

Hahnle's Conjecture
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A polynomial bound in m and 1/6

max{cTz: Az < b}

0/%

» Suppose each row a; of A satisfies ||a;|| =1
» Distance of row to subspace generated by other rows is > ¢

» O-distance property
(Brunsch & Réglin 2013)



A polynomial bound in m and 1/6

max{cTz: Az < b}

a;
0/15

» Suppose each row a; of A satisfies ||a;|| = 1
» Distance of row to subspace generated by other rows is > ¢

» O-distance property
(Brunsch & Réglin 2013)



0-distance property: Motivation
» P flow polytope: quadratic upper bound. (Orlin 1997)

» Transportation polytope: linear upper bound.  (Brightwell, v.d.Heuvel
and Stougie 2006)
» P={z € R": Az < b} with A totally unimodular: polynomial upper
bound
O(m*®n3log(mn)®)  (Dyer and Frieze 1994)
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0-distance property: Motivation

» P flow polytope: quadratic upper bound. (Orlin 1997)
totally unimodular!

» Transportation polytope: linear upper bound.  (Brightwell, v.d.Heuvel
and Stougie 2006) totally unimodular!

» P={z € R": Az < b} with A totally unimodular: polynomial upper
bound
O(m*®n3log(mn)®)  (Dyer and Frieze 1994)

Totally unimodular matrices
. satisfy the d-distance property with § = 1/n.



More than totally unimodular matrices

» Edge-node incidence matrix of graphs \ /

» Largest minor: exponential in | V|

> §=Q(1/VV) — ™~

o OO0 O~ O
[ e e e B e B
=eNell S =]
= O~ OoOo0o0
(= e = = = ]
== OO0 ooO



More than totally unimodular matrices

v

Edge-node incidence matrix of graphs

v

Largest minor: exponential in | V|

§=Q(1/VV)

v

v

Rows do not need to be integral or
rational

v

Geometric property

\ /
/ \

o OO0 O~ O
[ e e e B e B
=eNell S =]
= O~ OoOo0o0
(= e = = = ]
== OO0 ooO



Upper bound: Proof method

» Assume P = {z € R™: Az < b} is non-degenerate
» Associate a volume to each vertex

» Estimate number of Breadth-First-Search iterations until sum of
volumes of visited vertices exceeds half of the total volume



Pivoting and normal cones

» Normal cones do not intersect in interior.

» Two vertices are neighbors if and only if their normal cones share a
facet.
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Pivoting and normal cones

» Normal cones do not intersect in interior.

» Two vertices are neighbors if and only if their normal cones share a
facet.



Volume of a vertex

<

-

v




Volume expansion

Lemma
Let I C V with vol(I) < (1/2) - vol(By).
Volume of neighborhood of I is at least

vol(N(I)) = \/g(é/nl'f‘) -vol(I).



Volume expansion

Lemma
Let I C V with vol(I) < (1/2) - vol(By).
Volume of neighborhood of I is at least

vol(N(I)) = \/g(é/nl'f‘) -vol(I).

» I ={w}, vol(lp) > dé™/n!.



Volume expansion

Lemma
Let I C V with vol(I) < (1/2) - vol(By).
Volume of neighborhood of I is at least

vol(N(I)) = \/g(é/nl'f‘) -vol(I).

» I ={w}, vol(lp) > dé™/n!.
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Volume expansion

Lemma
Let 7 C V with vol(I) < (1/2) - vol(By).
Volume of neighborhood of I is at least

vol(N(I)) = \/g(é/nl'f‘) -vol(I).

» I ={w}, vol(lp) > dé™/n!.
> 2" > vol(f) > (1+ \/g((smlﬁ));c .67/,

Theorem
Diameter is bounded by O(n2®/6 - In(n/é)).



Proving the volume expansion lemma

» I CV, 8 =U,e;(CynN By) spherical cone

(a) Dockable sur- (b) Base of S. (c) Relative
face of S. boundary of the
base of S.



Proving the volume expansion lemma

» I CV, 8 =U,e;(CynN By) spherical cone

v VY

(d) Dockable sur- (e) Base of S. (f) Relative
face of S. boundary of the
base of S.

Expansion lemma follows from inequalities

D(Sv)

D(S) 2n
wol(Sy) S

2 L) [en
n®/d and vol(S)/ o




Proving the volume expansion lemma

D(s.)
vol(Sy)

D(S) 2n
< n? — = —.
sn’/é6  and vol(S) “Vr

Z D(S,) = D(S)
ve AN (I)
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Proving the volume expansion lemma

D(s.)
vol(Sy)

D(S) 2n
< n? — =y —.
sn’/é6  and vol(S) “Vr
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Proving the volume expansion lemma

D(Sy) 9 D(S) 2n
vol(5.) <n?/éd and m = \/;

vol( 4 (I))n2/6 > 3" D(S,) > D(S) > vol(S) 2%
ve AN (I)

vol(A (1)) >v2r - §/n5 - vol(9)



The inequalities 2. U)J <n?/§ and DES) >

vol(.S,

» First one is immediate from d-distance property




4

D(Sy) n2/5 and D(S) 2n

The inequalities val(8) S wol(5) = \ 7

» First one is immediate from d-distance property

H

» Second inequality

1. Isoperimetric inequality
2. Worst case cone is generated by shperical cap
3. Worst case spherical cap is half-ball



Result

Theorem (Bonifas et al. 2012)
The diameter is bounded by O(n2®/6 - In(n/é)).



Algorithmic results

» Dyer and Frieze (1994): polynomial randomized simplex algorithm for
TU-LPs

» Brunsch and Réglin (2013): Shadow vertex finds short path between
designated vertices in expected polytime (in n,m and 1/6)

» E. & Vempala (2014): Random-edge variant of simplex algorithm
solves LPs in expected polytime (in m,m and 1/6).

Expected number of pivots polynomial in n and 1/é only



Walking in the space of cones

If we

» start within cone of feasible solution
» leave a cone only through facet

» do not cross cones in one step

then we can keep track of optimal basis.



Walking in the space of cones

If we

» start within cone of feasible solution
» leave a cone only through facet

» do not cross cones in one step

then we can keep track of optimal basis.



Walking in the space of cones

If we

» start within cone of feasible solution
» leave a cone only through facet

» do not cross cones in one step

then we can keep track of optimal basis.



Walking in the space of cones

If we

» start within cone of feasible solution
» leave a cone only through facet

» do not cross cones in one step

then we can keep track of optimal basis.



Walking in the space of cones

If we

» start within cone of feasible solution
» leave a cone only through facet

» do not cross cones in one step

then we can keep track of optimal basis.



Walking in the space of cones

If we

» start within cone of feasible solution
» leave a cone only through facet

» do not cross cones in one step

then we can keep track of optimal basis.



Walking in the space of cones

If we

» start within cone of feasible solution
» leave a cone only through facet

» do not cross cones in one step

then we can keep track of optimal basis.



A random walk (Sketch!)

» Partition space of cones into small
parallelepipeds, as in (Dyer and Frieze
1994)



A random walk (Sketch!)

» Partition space of cones into small
parallelepipeds, as in (Dyer and Frieze
1994)




A random walk (Sketch!)

» Partition space of cones into small
parallelepipeds, as in (Dyer and Frieze
1994)

» Consider Gaussian

9(z) = exp(~[lz — c/8]|*/(2t0))




A random walk (Sketch!)

» Partition space of cones into small
parallelepipeds, as in (Dyer and Frieze
1994)

» Consider Gaussian
g(z) = exp(—|lz — ¢/8||*/(2t))
» At given parallelepiped P:

» Choose neighbor uniformly at random
» Make transition with prob.

min{1, g(P’)/g(P)}




A random walk (Sketch!)

» Partition space of cones into small
parallelepipeds, as in (Dyer and Frieze
1994)

» Consider Gaussian
g(z) = exp(—|lz — ¢/8||*/(2t))
» At given parallelepiped P:

» Choose neighbor uniformly at random
» Make transition with prob.

min{1, g(P')/g(P)}
» Lazy, time-reversable Markov chain with
stationary distribution proportional to
measure of parallelepipeds




A random walk (Sketch!)

» Partition space of cones into small
parallelepipeds, as in (Dyer and Frieze
1994)

» Consider Gaussian
g(z) = exp(—|lz — ¢/8||*/(2t))
» At given parallelepiped P:

» Choose neighbor uniformly at random
» Make transition with prob.

min{1, g(P')/g(P)}
» Lazy, time-reversable Markov chain with
stationary distribution proportional to
measure of parallelepipeds

» Good conductance follows from
isoperimetric inequality



A random walk (Sketch!)

» Partition space of cones into small
parallelepipeds, as in (Dyer and Frieze
1994)

» Consider Gaussian
g(z) = exp(—|lz — ¢/8||*/(2t))
» At given parallelepiped P:

» Choose neighbor uniformly at random
» Make transition with prob.

min{1, g(P’)/g(P)}
» Lazy, time-reversable Markov chain with

‘!\-
QRS
stationary distribution proportional to ' ‘.;.;‘,*4
measure of parallelepipeds AN

» Good conductance follows from
isoperimetric inequality



Our result

Theorem (E. & Vempala 2014)

There is a random-edge pivot-rule that solves a linear program using
poly(n,1/8) pivots in expectation.



Our result

Theorem (E. & Vempala 2014)

There is a random-edge pivot-rule that solves a linear program using
poly(n,1/8) pivots in expectation.

» Bound s-conductance of random walk form below > §3/n3%.



Our result

Theorem (E. & Vempala 2014)
There is a random-edge pivot-rule that solves a linear program using
poly(n,1/8) pivots in expectation.

» Bound s-conductance of random walk form below > §3/n3%.

» Lovasz & Simonovits (1993): After polynomial number of steps,
current parallelepiped is close to optimal cone whp.



Our result

Theorem (E. & Vempala 2014)

There is a random-edge pivot-rule that solves a linear program using
poly(n,1/8) pivots in expectation.

» Bound s-conductance of random walk form below > §3/n3%.

» Lovasz & Simonovits (1993): After polynomial number of steps,
current parallelepiped is close to optimal cone whp.

» Extension of a result of Cook et al. (1986): Element of optimal basis
can be retrieved.
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» Consequence of ellpsoid method: Linear program does not have to be
explicitly described

» Algorithm for separation problem implies algorithm for optimization
(Grotschel, Lovasz & Schrijver 1981)

» Our result: Polynomial running time as long as neighbors of vertex
can be computed

» LP does not have to be given explicitly and can be exponential
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» Superpolynomial lower bound for diameter of base abstraction?

» Deterministic simplex algorithm that solves linear programs in time
poly(n, 1/6)?

» Diameter result holds for local -distance property (at every vertex).
Can one achieve a corresponding algorithmic result?

» |s simplex algorithm generic machinery for efficient combinatorial
algorithms (Matchings, Submodular functions, ...)?



