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Dynamic Graphs	

Graphs subject to update operations 

Insert(u,v)!
Delete(u,v)!

ChangeWeight(u,v,w)!
Typical updates: 



A graph 

Initialize 
Insert 
Delete 
Query 

Dynamic Graphs	




Dynamic Graph Algorithms	

The goal of a dynamic graph algorithm is to support 
query and update operations as quickly as possible 
(usually much faster than recomputing from scratch). 

We will use also amortized analysis: 
Total worst-case time over sequence of ops 
                        # operations 

Notation: 
G = (V,E) 
n = |V| 
m = |E| 



Dynamic Graphs	


Partially Dynamic Problems 

Graphs subject to insertions only, or 
deletions only, but not both. 

Fully Dynamic Problems 

Graphs subject to intermixed sequences 
of insertions and deletions. 



Dynamic Graph Problems	


Support queries about properties on a 
dynamic graph 

Dynamic Connectivity (undirected graph G)  
Connected(): Connected(x,y): !
Is G connected?  Are x and y connected in G? 

Dynamic Minimum Spanning Tree 
(undirected graph G)  

 Any property on a MST of G 



Dynamic Graph Problems	


Dynamic All Pairs Shortest Paths  
Distance(x,y):  

 What is the distance from x to y in G? 
ShortestPath(x,y):  

 What is the shortest path from x to y in G? 

Dynamic Transitive Closure (directed graph G)  
Reachable(x,y):  
Is y reachable from x in G? 



Dynamic Graph Problems	

Dynamic Min Cut 
MinCut(): Cut(x,y):  
Min cut?        Are x and y on the same side of a  

    min cut of G? 

Dynamic Planarity Testing 
planar():  

 Is G planar? 

Dynamic k-connectivity 
k-connected():  k-connected(x,y):  
Is G k-connected?       Are x and y k-connected? 



Dynamic Graph Problems	

Dynamic (Approximate) Maximum Matching 
Matching():  
        Maximum Matching? 
ApproximateMatching():  
         Approximate Maximum Matching? 
ValueofMatching():    

Dynamic (Approximate) Minimum Vertex Cover 
VertexCover():  
        Approximate Minimum Vertex Cover? 
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Fully Dynamic Graph Connectivity 
Maintain an undirected graph G under an intermixed sequence of 
operations of the following type: 

•  insert(u,v) : Add a new edge (u,v)  

•  delete(u,v) : Remove edge (u,v) from G (assumes (u,v) in G) 

•  connected(u,v) : Return yes if there is a path between u and v; 
return no otherwise  

Subproblem (basic ingredient) in many other problems 

Minimum spanning trees, 2-connectivity, … 

Simple problem but lots of interesting ideas! 
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Applications in Computational Biology 

Eyal, Halperin: Dynamic maintenance of molecular surfaces under 
conformational changes. Symposium on Computational Geometry 
2005: 45-54 

Eyal, Halperin: Improved Maintenance of Molecular Surfaces 
Using Dynamic Graph Connectivity. WABI 2005: 401-413 

Bajaj, Chowdhury, Rasheed: A dynamic data structure for flexible 
molecular maintenance and informatics. SIAM/ACM Conference 
on Geometric and Physical Modeling 2009, 259-270, 2009 

Ulitsky, Shamir: Identification of functional modules using network 
topology and high-throughput data. BMC Systems Biology 2007, 
1:8   

…… 
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connected(v,w) 
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connected(v,w) 
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connected(v,w) 



18 

insert(v,w) 
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insert(v,w) 
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delete(v,w) 
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delete(v,w) 
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delete(v,w) 
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delete(v,w) 
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Without delete, a union-find data structure 
would be just sufficient 

Observation 
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Maintain a 
spanning 
forest of the 
graph 

We will have to link trees, cut trees, and determine 
whether two vertices are in the same tree in this forest 

Reduce the 
problem to a 
problem on 
trees (i.e., 
maintain a 
certificate for 
the property) 
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Operations we need to do on the forest 

link(v,w) : Join two trees in the forest by inserting edge (v,w) 
(assume v and w are in different trees) 

cut(v,w) : Split a tree by deleting edge (v,w) (assume v and w 
are adjacent in a tree) 

findtree(v)  : Return the tree containing vertex v in the forest 
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Operations we need to do on the forest 

link(v,w) : Join two trees in the forest by inserting edge (v,w) 
(assume v and w are in different trees) 

cut(v,w) : Split a tree by deleting edge (v,w) (assume v and w 
are adjacent in a tree) 

findtree(v)  : Return the tree containing vertex v in the forest 

 

Can do this in O(log n) per operation with several data 
structures, e.g., ET-trees (Euler Tour trees) 

We refer to those as dynamic tree data structures 
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ET-trees 

ET-tree is a balanced binary tree over the Euler tour of a tree. 

Can perform link, cut and findtree in O(log n) 
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But dynamic 
tree data 
structures are 
not enough: 
we still have a 
problem with 
deleting a tree 
edge 
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How do we find 
out whether 
there is a 
“replacement” 
edge for the 
forest or it 
really got 
disconnected ? 
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Summarising so far 

 
Tree Edge 

 
Non-Tree Edge 

  Insert Link Easy 

  Delete Cut, 
Replacement? Easy 
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To find a replacement, 
need to traverse        
one of the trees,    
which can be          
quite expensive.  

Randomization 
[Henzinger, 
King]: sample 
non-tree edges 
in smaller tree 

If sampling 
fails, push 
“sparse cut”   
to upper level 

Can we do this 
deterministically?  
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Look in the 
smaller tree:         
‘   tree edge           
‘   no replacement     
-   replacement  

Wish to gain 
something      
(in amortized 
sense) by 
accumulating 
information        
as we do that 
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Each edge has 
a level 
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Each edge has 
a level 

1

1
1

Increase the 
level of the 
edges in the 
smaller tree… 

1

1
1

1
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1

1
1

1

1
1

1

… and of any 
edge discovered 
not to be a 
“replacement” 

1

1Each edge has 
a level 

Increase the 
level of the 
edges in the 
smaller tree… 
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1

1
1

1

1
1

1

1

1

… and of any 
edge discovered 
not to be a 
“replacement” 

Each edge has 
a level 

Increase the 
level of the 
edges in the 
smaller tree… 

until you find a 
“replacement” 
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1

1
1

1

1
1

1

1

1
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1

1
1

1

1
1

1

1

1

Intuition:    
Next time you 
have to look 
again for a 
replacement… 



45 

1

1
1

1

1
1

1

1

1

1

… no need to 
look at non-tree 
edges with 
label 1! 

Intuition:    
Next time you 
have to look 
again for a 
replacement… 



46 

1

1
1

1

1
1

1

1

1

1

… no need to 
look at non-tree 
edges with 
label 1! 

Intuition:    
Next time you 
have to look 
again for a 
replacement… 
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1

1
1

1

1
1

1

1

1

1
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1

1
1

1

1
1

1

1

1

1

Keep on doing 
that upon edge 
deletions 
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1

1

1

1
1

1

1

1

1

Keep on doing 
that upon edge 
deletions 
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2

2

1

1
1

1

1

1

1

Again, 
increase the 
level of the 
edges in the 
smaller tree… 

Keep on doing 
that upon edge 
deletions 
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2

2

1

1
1

1

1

2

1

… and of any 
edge discovered 
not to be a 
“replacement” 

Again, 
increase the 
level of the 
edges in the 
smaller tree… 

Keep on doing 
that upon edge 
deletions 
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2

2

1

1
1

1

1

2

1

… and of any 
edge discovered 
not to be a 
“replacement” 

Again, 
increase the 
level of the 
edges in the 
smaller tree… 

until you find a 
“replacement” 

Keep on doing 
that upon edge 
deletions 
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2

2

1

1
1

1

1

2

1

… and of any 
edge discovered 
not to be a 
“replacement” 

Again, 
increase the 
level of the 
edges in the 
smaller tree… 

until you find a 
“replacement” 

Keep on doing 
that upon edge 
deletions 
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Terminology 
G is the dynamic graph. F is a spanning forest of G. 
 

An edge is either a tree edge or a non-tree edge. 
 

Each edge has a level ℓ. 
 

Gℓ is subgraph of G induced by edges of level ≥ ℓ. 
 

Gmax ⊆ …  ⊆ Gℓ ⊆ … ⊆  G2 ⊆ G1 ⊆ G0 = G 
 

Fℓ is subforest of F induced by edges of level ≥ ℓ. 
 

Fmax ⊆ …  ⊆ Fℓ ⊆ … ⊆  F2 ⊆ F1 ⊆ F0 = F 
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Invariants 

(Invariant 2) The forest F is a maximum spanning forest with 
respect to the levels of the edges  

è  If a tree edge at level ℓ is deleted, then a replacement edge 
(if there is one) must be of level ≤ ℓ 

(Invariant 1) Each tree in Fℓ (i.e., connected component in Gℓ) 
has at most n/2ℓ vertices 

è  At most (log n) levels 

Recall: Fℓ subforest of F induced by edges of level ≥ ℓ. 

Will keep the following two invariants: 

è  If (v, w) is a non-tree edge of level ℓ, then v and w are 
connected (i.e., in the same tree) in Fℓ  
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Flog n 

Fℓ 

F0 = F 

…  

…  

…  

…  

⊆
 

⊆
 

⊆
 

⊆
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Observations 
Initially all edges at level 0 (both invariants satisfied) 
 

Amortization argument: Levels of an edge can only 
increase, so we can have ≤ log n increases per edge 
 

Intuition: When level of non-tree edge increased, it is 
because we discovered that its endpoints are close 
enough in F to fit in a smaller tree (higher level) 
 

Increasing the level of a tree edge is always safe for 
Invariant 2 (F is a maximum spanning forest) but it 
may violate Invariant 1 
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Invariant 1 

v 
w 

T ⊆ Fℓ 
Fℓ+1 

Fℓ+1 
= ℓ = ℓ 

Fℓ+1 
= ℓ 

|T| ≤ n/2ℓ 

è  |Tv| ≤ n/2ℓ+1 

The replacement 
edge stays at level ℓ 

|Tv| ≤ |Tw|  

We can afford to push 
all edges of Tv  from 
level ℓ up to level ℓ + 1 
(while still preserving 
Invariant 1). 
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Implementation 
For each level ℓ: 
•  Maintain Fℓ in a dynamic tree data structure. 
For each vertex v and each level ℓ: 
•  Maintain a list of incident tree edges and a list of 

incident non-tree edges at that level.                                                   
(So each vertex has 2 lists per level, i.e., a total of 
2 log n lists.) 

 

Each vertex replicated in at most log n levels 
Thus, space usage will be O(m + n log n) 
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≥ ℓ 

≥ ℓ 

≥ ℓ 

≥ ℓ 

v 

w 

≥ ℓ 

= ℓ 

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then 
(v,w) belongs to some tree T of Fℓ 
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 ℓ 

> ℓ 

≥ ℓ 

≥ ℓ 

v 

w 

≥ ℓ 

 ℓ 

 ℓ 

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then 
(v,w) belongs to some tree T of Fℓ 

If there is a replacement at level ℓ then it must be incident 
to one of the pieces of T 
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 ℓ 

> ℓ 

≥ ℓ 

≥ ℓ 

v 

w 

≥ ℓ 

 ℓ 

 ℓ 

Let Tv and Tw be the pieces of T in Fℓ containing respectively v 
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.  

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then 
(v,w) belongs to some tree T of Fℓ 
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 ℓ+1 

> ℓ 

≥ ℓ 

≥ ℓ 

v 

w 

≥ ℓ 

 ℓ 

 ℓ 

Let Tv and Tw be the pieces of T in Fℓ containing respectively v 
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.  

We increase to ℓ+1 the edges of level ℓ in Tv 

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then 
(v,w) belongs to some tree T of Fℓ 
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 ℓ+1 

> ℓ 

≥ ℓ 

≥ ℓ 

v 

w 

≥ ℓ 

 ℓ 

 ℓ 

Let Tv and Tw be the pieces of T in Fℓ containing respectively v 
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.  

We increase to ℓ+1 the edges of level ℓ in Tv 

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then 
(v,w) belongs to some tree T of Fℓ 

Next, we traverse all level ℓ non-tree 
edges incident to Tv to find a level-ℓ 
replacement edge. 
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 ℓ+1 

> ℓ 

≥ ℓ 

≥ ℓ 

v 

w 

≥ ℓ 

 ℓ+1 

 ℓ 

Let Tv and Tw be the pieces of T in Fℓ containing respectively v 
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.  

We increase to ℓ+1 the edges of level ℓ in Tv 

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then 
(v,w) belongs to some tree T of Fℓ 

Next, we traverse all level ℓ non-tree 
edges incident to Tv to find a level-ℓ 
replacement edge. 

If a traversed edge is not a 
replacement we increase its 
level to ℓ+1 
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 ℓ+1 

> ℓ 

≥ ℓ 

≥ ℓ 

v 

w 

≥ ℓ 

 ℓ+1 

 ℓ 

Let Tv and Tw be the pieces of T in Fℓ containing respectively v 
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.  

We increase to ℓ+1 the edges of level ℓ in Tv 

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then 
(v,w) belongs to some tree T of Fℓ 

Next, we traverse all level ℓ non-tree 
edges incident to Tv to find a level-ℓ 
replacement edge. 

If a traversed edge is not a 
replacement we increase its 
level to ℓ+1 

If there is a replacement edge at 
level ℓ, then we are done 
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 ℓ+1 

> ℓ 

≥ ℓ 

≥ ℓ 

v 

w 

≥ ℓ 

 ℓ+1 

Let Tv and Tw be the pieces of T in Fℓ containing respectively v 
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.  

We increase to ℓ+1 the edges of level ℓ in Tv 

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then 
(v,w) belongs to some tree T of Fℓ 

Next, we traverse all level ℓ non-tree 
edges incident to Tv to find a level-ℓ 
replacement edge. 

If a traversed edge is not a 
replacement we increase its 
level to ℓ+1 

What if there is a no 
replacement edge at level ℓ?  
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If there is no replacement edge of level ℓ we look for 
replacement edges of level ℓ - 1 

 ℓ+1 

> ℓ 

≥ ℓ 

≥ ℓ 

v 

w 

≥ ℓ 

 ℓ+1 

 ℓ -1  ℓ -1 

Let Tv and Tw be the trees in Fℓ-1 
after deleting (v,w) containing v 
and w respectively 

Assume | Tv | ≤ | Tw | :  then we 
increase the level of edges of 
level ℓ-1 in Tv to be ℓ and we start 
traversing the non-tree edges of 
level ℓ-1 incident to Tv 

 ℓ -1 

 ℓ -1 
 ℓ -1 

 ℓ -1  ℓ 
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We keep going down like that level by level and either we 
find a replacement edge or we conclude that no replacement 
edge exists 

As we go, we keep our invariants 

 ℓ+1 

> ℓ 

≥ ℓ 

≥ ℓ 

v 

w 

≥ ℓ 

 ℓ+1 

 ℓ -1  ℓ -1 

 ℓ -1 

 ℓ -1 
 ℓ -1 

 ℓ -1  ℓ 
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Implementation 

•  We keep each forest  F0 ⊆ F1 ⊆ … ⊆ Flog n 
separately 

•  The non-tree edges of level ℓ are kept with 
the nodes of Fℓ  
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Implementing the operations 

connected(v,w) :   

Check whether v and w are in the same tree of F0 

 

insert(v,w) :  

If v and w are in different trees of F0 add the edge to F0  
(i.e., at level 0).. Otherwise, just add a non-tree edge of 
level 0 to v and w.  

Both invariants are still satisfied. 
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Implementing the operations 

delete(v,w):  

Let ℓ be the level of edge (v,w). 

•  If (v,w) is a non-tree edge of level ℓ then simply 
delete it from v and w in Fℓ. 
•  Otherwise, delete (v,w) from the trees containing it 
in Fℓ , Fℓ-1 , … , F0 and find a replacement edge as 
described before (at the highest possible level). If a 
replacement edge (x,y) is found at level k ≤ ℓ, then 
add (x,y) to Fk, Fk-1, … , F0 
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Operations we need to do on the forests 

For each ℓ, wish to maintain the forest Fℓ together 
with all non-tree edges on level ℓ.  

For any vertex v, wish to find the tree Tv in Fℓ 
containing it 

Want to be able to compute the size of Tv   

Want to be able to find an edge of Tv on level ℓ, if 
one exists.  

Want to be able to find a level ℓ non-tree edge 
incident to Tv, if any.  
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Operations we need to do on the forests 

Trees in Fℓ may be cut (when an edge is deleted) and 
linked (when a replacement edge is found, an edge is 
inserted or the level of a tree edge is increased).  

Moreover, non-tree edges may be introduced and 
any edge may disappear on level ℓ (when the level 
of an edge is increased or when non-tree edges are 
inserted or deleted).  

All this can be done in O(log n) time (by suitably 
augmenting ET-trees)  
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Analysis 

•  Query takes O(log n) 

•  Insert takes O(log n) time + charge the time 
to increase the level of the edge. Each level 
increase costs O(log n) so it O(log2n) total. 

 

•  Delete cuts and links O(log n) forests + 
level increases (charged to insert). Overall it 
takes O(log2n)  
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[Wulff-Nilsen SODA’13]   log n  
log log n 

O(               )   log2 n  
log log n O(               ) det/amort 

O(log5 n) [Kapron, King & O(               ) rand/w-c   log n  
log log n 

Nissenzweig JACM’97] 

 Mountjoy SODA’13] 



Lower Bounds	

Update Query Reference Type 

O(n1/2 ) O(1) [Eppstein, Galil, I. & det/w-c 

O(log n (log log n))      log n  
log log log n 

O(                     ) rand/amort [Thorup STOC’00] 

[Wulff-Nilsen SODA’13]   log n  
log log n 

O(               )   log2 n  
log log n O(               ) det/amort 

O(log5 n) [Kapron, King & O(               ) rand/w-c   log n  
log log n 

Nissenzweig JACM’97] 

 Mountjoy SODA’13] 

O(x log n) Ω(           ) log n  
log x 

O(x log n) Ω(           ) log n  
log x 

[Patrascu, Demaine SICOMP’06] 



Open: Close the Gaps	

Update Query Reference Type 

O(n1/2 ) O(1) [Eppstein, Galil, I. & det/w-c 

O(log n (log log n))      log n  
log log log n 

O(                     ) rand/amort [Thorup STOC’00] 

[Wulff-Nilsen SODA’13]   log n  
log log n 

O(               )   log2 n  
log log n O(               ) det/amort 

O(log5 n) [Kapron, King & O(               ) rand/w-c   log n  
log log n 

Nissenzweig JACM’97] 

 Mountjoy SODA’13] 

O(x log n) Ω(           ) log n  
log x 

O(x log n) Ω(           ) log n  
log x 

[Patrascu, Demaine SICOMP’06] 



Open Problems	


•  Deterministic algorithm with O(polylog n) update and query 
in the worst case? 

•  Deterministic / randomized algorithm with O(log n) update 
and query? 

•  Deterministic / randomized algorithm with o(log n) update 
and O(polylog n) query? 



References	

D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. 
Sparsification - a technique for speeding up dynamic graph 
algorithms. J. ACM, 44(5):669–696, 1997. See also FOCS’92. 
 

G. N. Frederickson. Data structures for on-line updating of 
minimum spanning trees, with applications. SIAM J. Comput., 
14(4):781–798, 1985. See also STOC’83. 
 

M. R. Henzinger and V. King. Randomized dynamic graph 
algorithms with polylogarithmic time per operation. Proc. 27th 
ACM Symposium on Theory of Computing (STOC), 1995, pp. 
519–527. 
 

M. R. Henzinger and M. Thorup. Sampling to provide or to 
bound: With applications to fully dynamic graph algorithms. 
Random Structures and Algorithms, 11(4):369–379, 
1997. See also ICALP’96. 



References	

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic 
deterministic fully-dynamic algorithms for connectivity, 
minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48
(4): 723–760, 2001. See also STOC’98. 
 

B. M. Kapron, V. King, and B. Mountjoy. Dynamic graph 
connectivity in polylogarithmic worst case time. 24th ACM-
SIAM Symposium on Discrete Algorithms (SODA) 2013: 
1131-1142. 
 

M. Patrascu and E. Demaine. Logarithmic Lower Bounds in the 
Cell-Probe Model. SIAM J. Comput., 35(4): 2006. See also 
STOC 2004. 



References	

M. Thorup. Near-optimal fully-dynamic graph connectivity. 
Proc. 32nd ACM Symposium on Theory of Computing (STOC), 
2000, pp. 343–350. 
 

C. Wulff-Nilsen: Faster Deterministic Fully-Dynamic Graph 
Connectivity. 24th ACM-SIAM Symposium on Discrete 
Algorithms (SODA) 2013: 1757-1769 
 


