
Dynamic Graph ���
Algorithms	

Giuseppe F. Italiano 	

University of Rome “Tor Vergata”	

giuseppe.italiano@uniroma2.it	

http://www.disp.uniroma2.it/users/italiano	

(slides on my Web Page)	

Outline	

Dynamic Graph Problems – Quick Intro

Lecture 1. (Undirected Graphs)
 Dynamic Connectivity

Lecture 2. (Undirected/Directed Graphs)
 Dynamic Shortest Paths

Lecture 3. (Non-dynamic?)
 2-Connectivity in Directed Graphs

Outline	

Dynamic Graph Problems – Quick Intro

Lecture 1. (Undirected Graphs)
 Dynamic Connectivity

Lecture 2. (Undirected/Directed Graphs)
 Dynamic Shortest Paths

Lecture 3. (Non-dynamic?)
 2-Connectivity in Directed Graphs

Dynamic Graphs	

Graphs subject to update operations

Insert(u,v)!
Delete(u,v)!

ChangeWeight(u,v,w)!
Typical updates:

A graph

Initialize
Insert
Delete
Query

Dynamic Graphs	

Dynamic Graph Algorithms	

The goal of a dynamic graph algorithm is to support
query and update operations as quickly as possible
(usually much faster than recomputing from scratch).

We will use also amortized analysis:
Total worst-case time over sequence of ops
 # operations

Notation:
G = (V,E)
n = |V|
m = |E|

Dynamic Graphs	

Partially Dynamic Problems

Graphs subject to insertions only, or
deletions only, but not both.

Fully Dynamic Problems

Graphs subject to intermixed sequences
of insertions and deletions.

Dynamic Graph Problems	

Support queries about properties on a
dynamic graph

Dynamic Connectivity (undirected graph G)  
Connected(): Connected(x,y): !
Is G connected? Are x and y connected in G?

Dynamic Minimum Spanning Tree
(undirected graph G)  

 Any property on a MST of G

Dynamic Graph Problems	

Dynamic All Pairs Shortest Paths  
Distance(x,y):

 What is the distance from x to y in G?
ShortestPath(x,y):

 What is the shortest path from x to y in G?

Dynamic Transitive Closure (directed graph G)  
Reachable(x,y):
Is y reachable from x in G?

Dynamic Graph Problems	

Dynamic Min Cut
MinCut(): Cut(x,y):
Min cut? Are x and y on the same side of a

 min cut of G?

Dynamic Planarity Testing
planar():

 Is G planar?

Dynamic k-connectivity
k-connected(): k-connected(x,y):
Is G k-connected? Are x and y k-connected?

Dynamic Graph Problems	

Dynamic (Approximate) Maximum Matching
Matching():
 Maximum Matching?
ApproximateMatching():
 Approximate Maximum Matching?
ValueofMatching():

Dynamic (Approximate) Minimum Vertex Cover
VertexCover():
 Approximate Minimum Vertex Cover?

Outline	

Dynamic Graph Problems – Quick Intro

Lecture 1. (Undirected Graphs)
 Dynamic Connectivity

Lecture 2. (Undirected/Directed Graphs)
 Dynamic Shortest Paths

Lecture 3. (Non-dynamic?)
 2-Connectivity in Directed Graphs

13

Fully Dynamic Graph Connectivity
Maintain an undirected graph G under an intermixed sequence of
operations of the following type:

•  insert(u,v) : Add a new edge (u,v)

•  delete(u,v) : Remove edge (u,v) from G (assumes (u,v) in G)

•  connected(u,v) : Return yes if there is a path between u and v;
return no otherwise

Subproblem (basic ingredient) in many other problems

Minimum spanning trees, 2-connectivity, …

Simple problem but lots of interesting ideas!

14

Applications in Computational Biology

Eyal, Halperin: Dynamic maintenance of molecular surfaces under
conformational changes. Symposium on Computational Geometry
2005: 45-54

Eyal, Halperin: Improved Maintenance of Molecular Surfaces
Using Dynamic Graph Connectivity. WABI 2005: 401-413

Bajaj, Chowdhury, Rasheed: A dynamic data structure for flexible
molecular maintenance and informatics. SIAM/ACM Conference
on Geometric and Physical Modeling 2009, 259-270, 2009

Ulitsky, Shamir: Identification of functional modules using network
topology and high-throughput data. BMC Systems Biology 2007,
1:8

……

15

connected(v,w)

16

connected(v,w)

17

connected(v,w)

18

insert(v,w)

19

insert(v,w)

20

delete(v,w)

21

delete(v,w)

22

delete(v,w)

23

delete(v,w)

24

Without delete, a union-find data structure
would be just sufficient

Observation

(Main) History of the Problem	

Update Query Reference

O(log3 n) [Henzinger, King JACM’99]

[Holm, de Lichtenberg &

 log n
log log n

 O()

Type
O(m1/2) O(1) [Frederickson SICOMP’85] det/w-c

O(n1/2) O(1) [Eppstein, Galil, I. & det/w-c

rand/amort

O(log2 n) [Henzinger, Thorup log n
log log n

O() rand/amort

O(log2 n) log n
log log n

O() det/amort

O(log n (log log n)) log n
log log log n

O() rand/amort [Thorup STOC’00]

[Wulff-Nilsen SODA’13] log n
log log n

O() log2 n
log log n O() det/amort

O(log5 n) [Kapron, King & O() rand/w-c log n
log log n

Nissenzweig JACM’97]

Rand. Struct. & Algs. ’97]

Thorup JACM’01]

 Mountjoy SODA’13]

Will see	

Update Query Reference

O(log3 n) [Henzinger, King JACM’99]

[Holm, de Lichtenberg &

 log n
log log n

 O()

Type
O(m1/2) O(1) [Frederickson SICOMP’85] det/w-c

O(n1/2) O(1) [Eppstein, Galil, I. & det/w-c

rand/amort

O(log2 n) [Henzinger, Thorup log n
log log n

O() rand/amort

O(log2 n) log n
log log n

O() det/amort

O(log n (log log n)) log n
log log log n

O() rand/amort [Thorup STOC’00]

[Wulff-Nilsen SODA’13] log n
log log n

O() log2 n
log log n O() det/amort

O(log5 n) [Kapron, King & O() rand/w-c log n
log log n

Nissenzweig JACM’97]

Rand. Struct. & Algs. ’97]

Thorup JACM’01]

 Mountjoy SODA’13]

Will actually see	

Update Query Reference

O(log3 n) [Henzinger, King JACM’99]

[Holm, de Lichtenberg &

 log n
log log n

 O()

Type
O(m1/2) O(1) [Frederickson SICOMP’85] det/w-c

O(n1/2) O(1) [Eppstein, Galil, I. & det/w-c

rand/amort

O(log2 n) [Henzinger, Thorup log n
log log n

O() rand/amort

O(log2 n) O(log n) det/amort

O(log n (log log n)) log n
log log log n

O() rand/amort [Thorup STOC’00]

[Wulff-Nilsen SODA’13] log n
log log n

O() log2 n
log log n O() det/amort

O(log5 n) [Kapron, King & O() rand/w-c log n
log log n

Nissenzweig JACM’97]

Rand. Struct. & Algs. ’97]

Thorup JACM’01]

 Mountjoy SODA’13]

28

Maintain a
spanning
forest of the
graph

We will have to link trees, cut trees, and determine
whether two vertices are in the same tree in this forest

Reduce the
problem to a
problem on
trees (i.e.,
maintain a
certificate for
the property)

29

Operations we need to do on the forest

link(v,w) : Join two trees in the forest by inserting edge (v,w)
(assume v and w are in different trees)

cut(v,w) : Split a tree by deleting edge (v,w) (assume v and w
are adjacent in a tree)

findtree(v) : Return the tree containing vertex v in the forest

30

Operations we need to do on the forest

link(v,w) : Join two trees in the forest by inserting edge (v,w)
(assume v and w are in different trees)

cut(v,w) : Split a tree by deleting edge (v,w) (assume v and w
are adjacent in a tree)

findtree(v) : Return the tree containing vertex v in the forest

Can do this in O(log n) per operation with several data
structures, e.g., ET-trees (Euler Tour trees)

We refer to those as dynamic tree data structures

31

ET-trees

ET-tree is a balanced binary tree over the Euler tour of a tree.

Can perform link, cut and findtree in O(log n)

32

But dynamic
tree data
structures are
not enough:
we still have a
problem with
deleting a tree
edge

33

34

35

How do we find
out whether
there is a
“replacement”
edge for the
forest or it
really got
disconnected ?

36

Summarising so far

Tree Edge

Non-Tree Edge

 Insert Link Easy

 Delete Cut,
Replacement? Easy

37

To find a replacement,
need to traverse
one of the trees,
which can be
quite expensive.

Randomization
[Henzinger,
King]: sample
non-tree edges
in smaller tree

If sampling
fails, push
“sparse cut”
to upper level

Can we do this
deterministically?

38

Look in the
smaller tree:
‘ tree edge
‘ no replacement
- replacement

Wish to gain
something
(in amortized
sense) by
accumulating
information
as we do that

39

Each edge has
a level

40

Each edge has
a level

1

1
1

Increase the
level of the
edges in the
smaller tree…

1

1
1

1

41

1

1
1

1

1
1

1

… and of any
edge discovered
not to be a
“replacement”

1

1Each edge has
a level

Increase the
level of the
edges in the
smaller tree…

42

1

1
1

1

1
1

1

1

1

… and of any
edge discovered
not to be a
“replacement”

Each edge has
a level

Increase the
level of the
edges in the
smaller tree…

until you find a
“replacement”

43

1

1
1

1

1
1

1

1

1

44

1

1
1

1

1
1

1

1

1

Intuition:
Next time you
have to look
again for a
replacement…

45

1

1
1

1

1
1

1

1

1

1

… no need to
look at non-tree
edges with
label 1!

Intuition:
Next time you
have to look
again for a
replacement…

46

1

1
1

1

1
1

1

1

1

1

… no need to
look at non-tree
edges with
label 1!

Intuition:
Next time you
have to look
again for a
replacement…

47

1

1
1

1

1
1

1

1

1

1

48

1

1
1

1

1
1

1

1

1

1

Keep on doing
that upon edge
deletions

49

1

1

1

1
1

1

1

1

1

Keep on doing
that upon edge
deletions

50

2

2

1

1
1

1

1

1

1

Again,
increase the
level of the
edges in the
smaller tree…

Keep on doing
that upon edge
deletions

51

2

2

1

1
1

1

1

2

1

… and of any
edge discovered
not to be a
“replacement”

Again,
increase the
level of the
edges in the
smaller tree…

Keep on doing
that upon edge
deletions

52

2

2

1

1
1

1

1

2

1

… and of any
edge discovered
not to be a
“replacement”

Again,
increase the
level of the
edges in the
smaller tree…

until you find a
“replacement”

Keep on doing
that upon edge
deletions

53

2

2

1

1
1

1

1

2

1

… and of any
edge discovered
not to be a
“replacement”

Again,
increase the
level of the
edges in the
smaller tree…

until you find a
“replacement”

Keep on doing
that upon edge
deletions

54

Terminology
G is the dynamic graph. F is a spanning forest of G.

An edge is either a tree edge or a non-tree edge.

Each edge has a level ℓ.

Gℓ is subgraph of G induced by edges of level ≥ ℓ.

Gmax ⊆ … ⊆ Gℓ ⊆ … ⊆ G2 ⊆ G1 ⊆ G0 = G

Fℓ is subforest of F induced by edges of level ≥ ℓ.

Fmax ⊆ … ⊆ Fℓ ⊆ … ⊆ F2 ⊆ F1 ⊆ F0 = F

55

Invariants

(Invariant 2) The forest F is a maximum spanning forest with
respect to the levels of the edges

è If a tree edge at level ℓ is deleted, then a replacement edge
(if there is one) must be of level ≤ ℓ

(Invariant 1) Each tree in Fℓ (i.e., connected component in Gℓ)
has at most n/2ℓ vertices

è At most (log n) levels

Recall: Fℓ subforest of F induced by edges of level ≥ ℓ.

Will keep the following two invariants:

è If (v, w) is a non-tree edge of level ℓ, then v and w are
connected (i.e., in the same tree) in Fℓ

56

Flog n

Fℓ

F0 = F

…

…

…

…

⊆

⊆

⊆

⊆

57

Observations
Initially all edges at level 0 (both invariants satisfied)

Amortization argument: Levels of an edge can only
increase, so we can have ≤ log n increases per edge

Intuition: When level of non-tree edge increased, it is
because we discovered that its endpoints are close
enough in F to fit in a smaller tree (higher level)

Increasing the level of a tree edge is always safe for
Invariant 2 (F is a maximum spanning forest) but it
may violate Invariant 1

58

Invariant 1

v
w

T ⊆ Fℓ
Fℓ+1

Fℓ+1
= ℓ = ℓ

Fℓ+1
= ℓ

|T| ≤ n/2ℓ

è |Tv| ≤ n/2ℓ+1

The replacement
edge stays at level ℓ

|Tv| ≤ |Tw|

We can afford to push
all edges of Tv from
level ℓ up to level ℓ + 1
(while still preserving
Invariant 1).

59

Implementation
For each level ℓ:
•  Maintain Fℓ in a dynamic tree data structure.
For each vertex v and each level ℓ:
•  Maintain a list of incident tree edges and a list of

incident non-tree edges at that level.
(So each vertex has 2 lists per level, i.e., a total of
2 log n lists.)

Each vertex replicated in at most log n levels
Thus, space usage will be O(m + n log n)

60

≥ ℓ

≥ ℓ

≥ ℓ

≥ ℓ

v

w

≥ ℓ

= ℓ

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then
(v,w) belongs to some tree T of Fℓ

61

 ℓ

> ℓ

≥ ℓ

≥ ℓ

v

w

≥ ℓ

 ℓ

 ℓ

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then
(v,w) belongs to some tree T of Fℓ

If there is a replacement at level ℓ then it must be incident
to one of the pieces of T

62

 ℓ

> ℓ

≥ ℓ

≥ ℓ

v

w

≥ ℓ

 ℓ

 ℓ

Let Tv and Tw be the pieces of T in Fℓ containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then
(v,w) belongs to some tree T of Fℓ

63

 ℓ+1

> ℓ

≥ ℓ

≥ ℓ

v

w

≥ ℓ

 ℓ

 ℓ

Let Tv and Tw be the pieces of T in Fℓ containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.

We increase to ℓ+1 the edges of level ℓ in Tv

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then
(v,w) belongs to some tree T of Fℓ

64

 ℓ+1

> ℓ

≥ ℓ

≥ ℓ

v

w

≥ ℓ

 ℓ

 ℓ

Let Tv and Tw be the pieces of T in Fℓ containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.

We increase to ℓ+1 the edges of level ℓ in Tv

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then
(v,w) belongs to some tree T of Fℓ

Next, we traverse all level ℓ non-tree
edges incident to Tv to find a level-ℓ
replacement edge.

65

 ℓ+1

> ℓ

≥ ℓ

≥ ℓ

v

w

≥ ℓ

 ℓ+1

 ℓ

Let Tv and Tw be the pieces of T in Fℓ containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.

We increase to ℓ+1 the edges of level ℓ in Tv

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then
(v,w) belongs to some tree T of Fℓ

Next, we traverse all level ℓ non-tree
edges incident to Tv to find a level-ℓ
replacement edge.

If a traversed edge is not a
replacement we increase its
level to ℓ+1

66

 ℓ+1

> ℓ

≥ ℓ

≥ ℓ

v

w

≥ ℓ

 ℓ+1

 ℓ

Let Tv and Tw be the pieces of T in Fℓ containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.

We increase to ℓ+1 the edges of level ℓ in Tv

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then
(v,w) belongs to some tree T of Fℓ

Next, we traverse all level ℓ non-tree
edges incident to Tv to find a level-ℓ
replacement edge.

If a traversed edge is not a
replacement we increase its
level to ℓ+1

If there is a replacement edge at
level ℓ, then we are done

67

 ℓ+1

> ℓ

≥ ℓ

≥ ℓ

v

w

≥ ℓ

 ℓ+1

Let Tv and Tw be the pieces of T in Fℓ containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | Tv | ≤ | Tw |.

We increase to ℓ+1 the edges of level ℓ in Tv

Suppose a tree edge of level ℓ, say (v,w), is deleted. Then
(v,w) belongs to some tree T of Fℓ

Next, we traverse all level ℓ non-tree
edges incident to Tv to find a level-ℓ
replacement edge.

If a traversed edge is not a
replacement we increase its
level to ℓ+1

What if there is a no
replacement edge at level ℓ?

68

If there is no replacement edge of level ℓ we look for
replacement edges of level ℓ - 1

 ℓ+1

> ℓ

≥ ℓ

≥ ℓ

v

w

≥ ℓ

 ℓ+1

 ℓ -1 ℓ -1

Let Tv and Tw be the trees in Fℓ-1
after deleting (v,w) containing v
and w respectively

Assume | Tv | ≤ | Tw | : then we
increase the level of edges of
level ℓ-1 in Tv to be ℓ and we start
traversing the non-tree edges of
level ℓ-1 incident to Tv

 ℓ -1

 ℓ -1
 ℓ -1

 ℓ -1 ℓ

69

We keep going down like that level by level and either we
find a replacement edge or we conclude that no replacement
edge exists

As we go, we keep our invariants

 ℓ+1

> ℓ

≥ ℓ

≥ ℓ

v

w

≥ ℓ

 ℓ+1

 ℓ -1 ℓ -1

 ℓ -1

 ℓ -1
 ℓ -1

 ℓ -1 ℓ

70

Implementation

•  We keep each forest F0 ⊆ F1 ⊆ … ⊆ Flog n
separately

•  The non-tree edges of level ℓ are kept with
the nodes of Fℓ

71

Implementing the operations

connected(v,w) :

Check whether v and w are in the same tree of F0

insert(v,w) :

If v and w are in different trees of F0 add the edge to F0
(i.e., at level 0).. Otherwise, just add a non-tree edge of
level 0 to v and w.

Both invariants are still satisfied.

72

Implementing the operations

delete(v,w):

Let ℓ be the level of edge (v,w).

•  If (v,w) is a non-tree edge of level ℓ then simply
delete it from v and w in Fℓ.
•  Otherwise, delete (v,w) from the trees containing it
in Fℓ , Fℓ-1 , … , F0 and find a replacement edge as
described before (at the highest possible level). If a
replacement edge (x,y) is found at level k ≤ ℓ, then
add (x,y) to Fk, Fk-1, … , F0

73

Operations we need to do on the forests

For each ℓ, wish to maintain the forest Fℓ together
with all non-tree edges on level ℓ.

For any vertex v, wish to find the tree Tv in Fℓ
containing it

Want to be able to compute the size of Tv

Want to be able to find an edge of Tv on level ℓ, if
one exists.

Want to be able to find a level ℓ non-tree edge
incident to Tv, if any.

74

Operations we need to do on the forests

Trees in Fℓ may be cut (when an edge is deleted) and
linked (when a replacement edge is found, an edge is
inserted or the level of a tree edge is increased).

Moreover, non-tree edges may be introduced and
any edge may disappear on level ℓ (when the level
of an edge is increased or when non-tree edges are
inserted or deleted).

All this can be done in O(log n) time (by suitably
augmenting ET-trees)

75

Analysis

•  Query takes O(log n)

•  Insert takes O(log n) time + charge the time
to increase the level of the edge. Each level
increase costs O(log n) so it O(log2n) total.

•  Delete cuts and links O(log n) forests +
level increases (charged to insert). Overall it
takes O(log2n)

(Main) History of the Problem	

Update Query Reference

O(log3 n) [Henzinger, King JACM’99]

[Holm, de Lichtenberg &

 log n
log log n

 O()

Type
O(m1/2) O(1) [Frederickson SICOMP’85] det/w-c

O(n1/2) O(1) [Eppstein, Galil, I. & det/w-c

rand/amort

O(log2 n) [Henzinger, Thorup log n
log log n

O() rand/amort

O(log2 n) log n
log log n

O() det/amort

O(log n (log log n)) log n
log log log n

O() rand/amort [Thorup STOC’00]

[Wulff-Nilsen SODA’13] log n
log log n

O() log2 n
log log n O() det/amort

O(log5 n) [Kapron, King & O() rand/w-c log n
log log n

Nissenzweig JACM’97]

Rand. Struct. & Algs. ’97]

Thorup JACM’01]

 Mountjoy SODA’13]

Best Bounds	

Update Query Reference

O(log3 n) [Henzinger, King JACM’99]

[Holm, de Lichtenberg &

 log n
log log n

 O()

Type
O(m1/2) O(1) [Frederickson SICOMP’85] det/w-c

O(n1/2) O(1) [Eppstein, Galil, I. & det/w-c

rand/amort

O(log2 n) [Henzinger, Thorup log n
log log n

O() rand/amort

O(log2 n) log n
log log n

O() det/amort

O(log n (log log n)) log n
log log log n

O() rand/amort [Thorup STOC’00]

[Wulff-Nilsen SODA’13] log n
log log n

O() log2 n
log log n O() det/amort

O(log5 n) [Kapron, King & O() rand/w-c log n
log log n

Nissenzweig JACM’97]

Rand. Struct. & Algs. ’97]

Thorup JACM’01]

 Mountjoy SODA’13]

Best Bounds	

Update Query Reference Type

O(n1/2) O(1) [Eppstein, Galil, I. & det/w-c

O(log n (log log n)) log n
log log log n

O() rand/amort [Thorup STOC’00]

[Wulff-Nilsen SODA’13] log n
log log n

O() log2 n
log log n O() det/amort

O(log5 n) [Kapron, King & O() rand/w-c log n
log log n

Nissenzweig JACM’97]

 Mountjoy SODA’13]

Lower Bounds	

Update Query Reference Type

O(n1/2) O(1) [Eppstein, Galil, I. & det/w-c

O(log n (log log n)) log n
log log log n

O() rand/amort [Thorup STOC’00]

[Wulff-Nilsen SODA’13] log n
log log n

O() log2 n
log log n O() det/amort

O(log5 n) [Kapron, King & O() rand/w-c log n
log log n

Nissenzweig JACM’97]

 Mountjoy SODA’13]

O(x log n) Ω() log n
log x

O(x log n) Ω() log n
log x

[Patrascu, Demaine SICOMP’06]

Open: Close the Gaps	

Update Query Reference Type

O(n1/2) O(1) [Eppstein, Galil, I. & det/w-c

O(log n (log log n)) log n
log log log n

O() rand/amort [Thorup STOC’00]

[Wulff-Nilsen SODA’13] log n
log log n

O() log2 n
log log n O() det/amort

O(log5 n) [Kapron, King & O() rand/w-c log n
log log n

Nissenzweig JACM’97]

 Mountjoy SODA’13]

O(x log n) Ω() log n
log x

O(x log n) Ω() log n
log x

[Patrascu, Demaine SICOMP’06]

Open Problems	

•  Deterministic algorithm with O(polylog n) update and query
in the worst case?

•  Deterministic / randomized algorithm with O(log n) update
and query?

•  Deterministic / randomized algorithm with o(log n) update
and O(polylog n) query?

References	

D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig.
Sparsification - a technique for speeding up dynamic graph
algorithms. J. ACM, 44(5):669–696, 1997. See also FOCS’92.

G. N. Frederickson. Data structures for on-line updating of
minimum spanning trees, with applications. SIAM J. Comput.,
14(4):781–798, 1985. See also STOC’83.

M. R. Henzinger and V. King. Randomized dynamic graph
algorithms with polylogarithmic time per operation. Proc. 27th
ACM Symposium on Theory of Computing (STOC), 1995, pp.
519–527.

M. R. Henzinger and M. Thorup. Sampling to provide or to
bound: With applications to fully dynamic graph algorithms.
Random Structures and Algorithms, 11(4):369–379,
1997. See also ICALP’96.

References	

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic
deterministic fully-dynamic algorithms for connectivity,
minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48
(4): 723–760, 2001. See also STOC’98.

B. M. Kapron, V. King, and B. Mountjoy. Dynamic graph
connectivity in polylogarithmic worst case time. 24th ACM-
SIAM Symposium on Discrete Algorithms (SODA) 2013:
1131-1142.

M. Patrascu and E. Demaine. Logarithmic Lower Bounds in the
Cell-Probe Model. SIAM J. Comput., 35(4): 2006. See also
STOC 2004.

References	

M. Thorup. Near-optimal fully-dynamic graph connectivity.
Proc. 32nd ACM Symposium on Theory of Computing (STOC),
2000, pp. 343–350.

C. Wulff-Nilsen: Faster Deterministic Fully-Dynamic Graph
Connectivity. 24th ACM-SIAM Symposium on Discrete
Algorithms (SODA) 2013: 1757-1769

