
Set-Up

set up non-certifying and certifying planarity demo. Let the
non-certifying demo run during introduction
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Certifying Algorithms
Algorithmics meets Software Engineering

Kurt Mehlhorn



Outline of Talk

problem definition and certifying algorithms
examples of certifying algorithms

testing bipartiteness
matchings in graphs
planarity testing
convex hulls
further examples

advantages of certifying algorithms
universality
formal verification and certifying algorithms
summary
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The Problem

Program for f

x y

A user feeds x to the program, the program returns y .

How can the user be sure that, indeed,

y = f (x)?

The user has no way to know.
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Warning Examples

LEDA 2.0 planarity test was incorrect
Rhino3d (a CAD systems) fails to com-
pute correct intersection of two cylinders
and two spheres

CPLEX (a linear programming solver) fails on benchmark
problem etamacro.

Mathematica 4.2 (a mathematics systems) fails to solve a
small integer linear program

In[1] := ConstrainedMin[ x , {x==1,x==2} , {x} ]
Out[1] = {2, {x->2}}

In[1] := ConstrainedMax[ x , {x==1,x==2} , {x} ]
ConstrainedMax::"lpsub": "The problem is unbounded."
Out[2] = {Infinity, {x -> Indeterminate}}
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The Proposal

Programs must justify (prove) their answers
in a way

that is easily checked by their users.
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A Certifying Program for a Function f

Certifying
program for f

Checker C

x

x y

w

accept (x , y ,w)

reject

On input x , a certifying program returns
the function value y and a certificate (witness) w

w proves y = f (x) even to a dummy,

and there is a simple program C, the checker, that verifies
the validity of the proof.
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A First Example: Testing Bipartiteness of Graphs

A graph is bipartite if its vertices
can be colored black and white
such that the endpoints of each
edge have distinct colors. YES NO ??

Conventional algorithm outputs YES or NO

Certifying Algorithm outputs

a two-coloring in the YES-case

an odd cycle in the NO-case

Remark: simple modification of the standard algorithm suffices
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History

I do not claim that I invented the concept; it is an old
concept

al-Kwarizmi: multiplication
extended Euclid: gcd
primal-dual algorithms in combinatorial optimization
Blum et al.: Programs that check their work

I do claim that Näher and I were the first (1995) to adopt the
concept as the design principle for a large library project:
LEDA

(Library of Efficient Data Types and Algorithms)

Kratsch/McConnell/M/Spinrad (SODA 2003) coin name

McConnell/M/Näher/Schweitzer (2010): 80 page survey
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How I got interested?

till ’83: only theoretical work in algorithms and complexity

’83 – ’89: participation in a project on VLSI design:
implementation work proceeds very slowly

since ’89: LEDA, library of efficient data types and algorithms

many implementations incorrect

’95: adopt exact computation paradigm (computational
geometry) and certifying algorithms as design principles

’95 – ’99: make textbook algs certifying, reimplementation of
library, LEDA book

since ’00: additional certifying algorithms

’10: 80 page survey paper

since ’12: formal verification of checkers
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Examples

Planarity Testing
Maximum Cardinality Matchings

Further Examples

Certifying Algorithms Kurt Mehlhorn 11



Example II: Planarity Testing

Given a graph G, decide whether it is planar
Tarjan (76): planarity can be tested in linear time
A story and a demo
Combinatorial planar embedding is a witness for planarity

Chiba et al (85): planar embedding of a planar G in linear time

Kuratowski subgraph is a witness for non-planarity
Hundack/M/Näher (97): Kuratowski subgraph of non-planar G in linear time, LEDAbook, Chapter 9
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Example III: Maximum Cardinality Matchings

A matching M is a set of edges no two of which share an
endpoint

The blue edges form a matching of maximum cardinality;
this is non-obvious as two vertices are unmatched.

A conventional algorithm outputs the set of blue edges.
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Maximum Cardinality Matching: A Certifying Alg

Edmonds’ Theorem: Let M be a matching in a graph G and let
` be a labelling of the vertices with non-negative integers such
that for each edge e = (u, v) either `(u) = `(v) � 2 or
1 2 { `(u), `(v) }. Then

|M|  n1 +
X

i�2

bn
i

/2c ,

where n

i

is the number of vertices labelled i .
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Edmonds’ Theorem: Let M be a matching in a graph G and let
` be a labelling of the vertices with non-negative integers such
that for each edge e = (u, v) either `(u) = `(v) � 2 or
1 2 { `(u), `(v) }. Then

|M|  n1 +
X

i�2

bn
i

/2c ,

where n

i

is the number of vertices labelled i .

|M| = 6

m1 = 4, m2 = 3, m3 = 3.

no matching has more than

4 + b3/2c+ b3/2c = 6

edges.
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Maximum Cardinality Matching: A Certifying Alg

Edmonds’ Theorem: Let M be a matching in a graph G and let
` be a labelling of the vertices with non-negative integers such
that for each edge e = (u, v) either `(u) = `(v) � 2 or
1 2 { `(u), `(v) }. Then

|M|  n1 +
X

i�2

bn
i

/2c ,

where n

i

is the number of vertices labelled i .

Let M1 be the edges in M having at least one endpoint
labelled 1 and, for i � 2, let M

i

be the edges in M having
both endpoints labelled i .

M = M1 [ M2 [ M3 [ . . .

|M1|  n1 and |M
i

|  n

i

/2 for i � 2.
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Further Examples

biconnectivity, strong connectivity, flows, . . . ,

Convex Hulls

Schmidt, Mehlhorn/Neumann/Schmidt: Three-Connectivity of
Graphs

Georgiadis/Tarjan: Dominators in Digraphs

Wang: Arrangements of Algebraic Curves

Mehlhorn/Sagraloff/Wang: Root Isolation for Real Polynomials

Althaus/Dumitriu: Certifying feasibility and objective value of
linear programs

Hauenstein/Sottile: alphaCertified: certifying solutions to
polynomial systems

Cook et al: Traveling Salesman Tours

Dictionaries
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The Advantages of Certifying Algorithms

Certifying algs can be tested on
any input
and not just on inputs for which the result is known.

Certifying algorithms are reliable:
Either give the correct answer
or notice that they have erred ) confinement of error

Computation as a service
There is no need to understand the program, understanding
the witness property and the checking program suffices.
One may even keep the program secret and only publish the
checker
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Odds and Ends

General techniques
Linear programming duality
Characterization theorems
Program composition

Probabilistic programs and checkers

Reactive Systems (data structures)
does apply to problems in NP (and beyond), e.g., SAT

output a satisfying assignment of satisfiable inputs
ouput a resolution proof for unsatisfiability otherwise
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Universality

Does every problem have a certifying algorithm? Can every
program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by
McConnell/M/Näher/Schweitzer (CS Review), in particular, all
text-book algorithms can be made certifying

most programs in LEDA are certifying, and

Thm: Every deterministic program can be made certifying
without asymptotic loss of efficiency

(at least in principle)

I still believe that the opposite should be true; however, for
every formalization that I tried, I could prove the theorem.
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The Maximum Cardinality Matching Checker
Edmonds’ Theorem: Let M be a matching in a graph G = (V , E) and let ` : V ! N such that for each edge
e = (u, v) of G either `(u) = `(v) � 2 or 1 2 { `(u), `(v) }. Then

|M|  n1 +
X

i�2

bn

i

/2c ,

where n

i

is the number of vertices labelled i .

The Checker Program has input G, M, and `:
checks that M ✓ E ,

checks that M is a matching,

checks that ` satisfies the hypothesis of the theorem, and

checks that |M| = n1 +
P

i�2 bni

/2c

set c[v ] = 0 for all v 2 V ;
for all e = (u, v) 2 M: increment c[u] and c[v ];
if some counter reaches 2, M is not a matching.
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Who Checks the Checker?

How can we be sure that the checker programs are correct?

My answer up to 2011: Because they are so simple.

Because we can prove their correctness in a formal system

Isabelle/HOL
Nipkow/Paulson

formal
mathematics

proof are
machine-checked

only kernel needs
to be trusted
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formal
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proof are
machine-checked

only kernel needs
to be trusted

definition disjoint-edges :: (↵, �) pre-graph ) � ) � ) bool where

disjoint-edges G e1 e2 = (

start G e1 6= start G e2 ^ start G e1 6= target G e2 ^
target G e1 6= start G e2 ^ target G e1 6= target G e2)

definition matching :: (↵, �) pre-graph ) � set ) bool where

matching G M = (

M ✓ edges G ^
(8e1 2 M. 8e2 2 M. e1 6= e2 �! disjoint-edges G e1 e2))

definition edge-as-set :: � ) ↵ set where

edge-as-set e ⌘ {tail G e, head G e}

lemma matching disjointness:

assumes matching G M

assumes e1 2 M assumes e2 2 M assumes e1 6= e2

shows edge-as-set e1 \ edge-as-set e2 = {}
using assms

by (auto simp add: edge-as-set def disjoint-edges def matching def)
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What do we Formally Verify and How?

Edmonds’ theorem

Checker always halts and either rejects or accepts.

Checker accepts a triple (G,M, `) iff is satisfies the
assumptions of Edmonds’ theorem.

we prove Edmonds’ theorem in Isabelle

we translate checkers from C to I-Monads with AutoCorres
(NICTA)

I-Monads is a programming language defined in Isabelle

we prove items 2 and 3 for the resulting I-Monads program
in Isabelle

since NICTA-tools are verified, this verifies the C-code of the
checker

verification revealed that one of the checkers in LEDA was
incomplete
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Formal Verification: Summary

Formal Instance Correctness
If a formally verified checker accepts a triple (x , y ,w),

we have a formal proof that y is the correct output for input x .

a high level of trust (only Isabelle kernel needs to be trusted)

a way to build large libraries of trusted algorithms
Alkassar/Böhme/M/Rizkallah: Verification of Certifying Computations, JAR 2014

Noshinski/Rizkallah/M: Verification of Certifying Computations through AutoCorres and Simpl,
NASA Formal Methods Symposium 2014
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Summary
Only certifying algs are good algs
Certifying algs have many advantages
over standard algs:

every run is a test
notice when they erred
can be relied on without knowing code
are a way to computation as a service

Formal verification of checkers and
formal proof of witness property are
feasible

Most programs in the LEDA system are
certifying.

When you design your next
algorithm,

make it certifying.
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k -Connectivity

A (multi-)graph is k -edge-connected if removal of any k � 1
edges does not disconnect it.

A (multi-)graph is k -vertex-connected if removal of any k � 1
vertices does not disconnect it.

today’s talk: certifying algorithms for 3-connectivity

3-edge- and 3-vertex connected
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k -Connectivity

A (multi-)graph is k -edge-connected if removal of any k � 1
edges does not disconnect it.

A (multi-)graph is k -vertex-connected if removal of any k � 1
vertices does not disconnect it.

today’s talk: certifying algorithms for 3-connectivity

2-edge-connected, but not 3-
edge-connected

2-vertex-connected, but not 3-
vertex-connected
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Sources

Kurt Mehlhorn, Adrian Neumann, Jens M. Schmidt:
Certifying 3-Edge-Connectivity, available in arxive

Jens. M. Schmidt: Contractions, Removals and Certifying
3-Connectivity in Linear Time, SIAM Journal on Computing,
2013, 494-535

N. Linial, L. Lovász, A. Wigderson: Rubber bands, convex
embeddings and graph connectivity, Combinatorica, 1988

R. M. McConnell, K. Mehlhorn, S. Näher, P. Schweitzer:
Certifying algorithms, Computer Science Review, 2011

Alkassar, E., Böhme, S., Mehlhorn, K.,Rizkallah, C.:
Verification of certifying computations, Journal of Automated
Reasoning, to appear
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Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
edges upwards and back edges downwards.

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore back edges top-down.
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Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
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Chain Decomposition

A special ear-decomposition. Perform a DFS and direct tree
edges upwards and back edges downwards.

C1C2

C3

C4
C5C6

C1

C2

C4

C3 C5

C6

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore back edges top-down.
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Two Edge and Vertex Connectivity

Two-edge-connectivity:

No: exhibit a bridge (= a cut consisting of a single edge)
Yes: exhibit an ear decomposition

Two-vertex-connectivity:

No: exhibit a cut-vertex (= a vertex-cut consisting of a single
vertex)

Yes: exhibit an open ear decomposition

All of this is easily done in linear time using the
chain-decomposition (Jens Schmidt)
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Three Edge and Vertex Connectivity

3-edge-connectivity and 3-vertex-connectivity are well studied
problems. Many linear time solutions known, e.g.:

1973: Hopcroft and Tarjan with a correction by Gutwenger
and Mutzel
1992: Nagamochi and Ibaraki
1992: Taoka, Watanabe, and Onaga
2007, 2009: Tsin
Italiano and Galil: reduce edge-connectivity to
vertex-connectivity

None of these algorithms is certifying.

They exhibit 2-cuts in the negative case and state
3-connectedness otherwise.
For a user, it is a bit like saying: “I tried hard to find a 2-cut and
could not find one. Therefore, I now believe that the graph is
3-connected”.
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Three-Edge-Connectedness in Time O(m2).

For every edge e: certify that G \ e is 2-edge-connected.

In order to do better, we need structural insight.
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Three-Edge-Connectness

Theorem (Mader, 1978)
A graph is 3-edge-connected iff it can be constructed from a
K 3

2 = by the following three operations
Add an edge between two existing nodes
Split an edge, connect the new node with an old node

Split two edges and connect the two new nodes

Theorem (Mehlhorn/Neumann/Schmidt, 2013)
There is a linear time certifying algorithm for
3-edge-connectivity.

It outputs either a 2-edge-cut or a Mader construction
sequence.
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Content

In This Talk
How to find a construction sequence for a given 3-connected
graph in time O((n + m) log(n + m).

In the paper:
Correctness proof.
Linear time algorithm.
How to verify the certificate.
A certifying algorithm for 3-edge-connected components.
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Mader Constructions and Subdivisions

A construction sequence for the graph on the right, once in
terms of graphs and once in terms of subdivisions.

It is more convenient to work with subdivisions (a graph whose
edges are subdivided by additional vertices), i.e., when we add
an edge, we also introduce all vertices that will ever be placed
on the edge.
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Mader Constructions and Subdivisions

branch vertex

non-branch vertex
Link
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A First Algorithm

1. Find a K 3
2 subdivision. Initialize Gc = K 3

2

2. Find a path P in G � Gc from a node u to a node v , such
that
a) at least one of {u, v} has degree at least three, or
b) u and v lie on different links

3. Add P to the current subgraph
4. If the current subgraph is not G, goto 2.
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Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1

C1

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C1

C2

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C3

C1

C2 C3

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C3

C4

C1

C2

C4

C3

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C3

C4
C5

C1

C2

C4

C3 C5

Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition
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Construction of a chain: Follow a back edge and then tree
edges up to a node already seen; the chain containing this

node is the parent chain. Explore backedge top-down.

12



Chain Decomposition

A structure to help find a K 3
2 and subsequent paths. A special

ear-decomposition. Perform a DFS and direct tree edges
upwards and back edges downwards.

C1C2

C3

C4
C5C6

C1

C2

C4

C3 C5

C6

Lemma: If G is 3-edge-connected then there is a Mader
construction that adds the chains parent-first.
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An Improved Algorithm

Observations
If G is 2-vertex-connected: C1 [ C2 = K 3

2
We start with Gc = C1 [ C2; current graph
Chains become visible as soon as both endpoints belong to
Gc

A visible chain can be added (is addable) to Gc , if its
endpoints lie on different links or one is a branch vertex.
Conversely: a visible chain is not addable if its endpoints
are on the same link.
Adding a chain makes its endpoints branch vertices (if not
already branching); this may make other chains addable. It
also makes the children of the chain visible.

13



An Improved Algorithm

1. Initialize graph to C1 [ C2 ⇠ K 3
2 and iterate over children C

of C1 and C2. Add addable C’s to the list of addable chains,
associate others with a link.

2. Take a chain C from the list of addable chains.
a) Add C. This turns endpoints that are non-branching to

branching vertices and splits the links containing these
vertices. So we split zero or one or two links.

b) Check whether splitting a link L makes chains addable; such
chains have both endpoints on L, but not both endpoints on L1
or L2.

c) Process the children of C: some are addable and some have
both endpoints on inner vertices of C. Associate the latter with
the link C.

3. If there are addable chains left, goto 2.
Can be implemented such that the runtime is in

O((n + m) log(n + m)).
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Analysis of Improved Algorithm

All steps except 2b are certainly linear.

In 2b we have to look at all chains having both endpoints on
L; some become addable and some will have both
endpoints on L1 or L2. We will look at those again.
How to process L?

process all chains incident to the new branching vertex.
work on L from both sides; switch between working on L1 and
L2: an elementary step is to look at the endpoint of a chain.
stop, if either L1 or L2 is completely processed, say L1: for
each chain having both endpoints on L and at least one
endpoint on L1, we have seen two or one endpoint. If seen
one, the chain is addable. Otherwise, now both endpoints on
L1.
cost = # addable ch. + 2 · mini=1,2 # chains only incident to Li
charge the latter cost to the non-addable chains moved to
Lj=argmin mini=1,2... and observe: whenever a chain is charged,
it is moved to a set of half the size.
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A Linear Time Algorithm

see paper

also: a linear time certifying alg for computing cactus
representation of 2-cuts.

open problem: our O((n + m) log(n + m)) algorithm is
considerably simpler than the O(n + m) algorithm. The
linear time algorithm for vertex-connectivity is considerably
more complex that the linear time edge-connectivity alg.
Can it be simplified by accepting a log-factor?
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