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The Physarum Computer

Physarum, a slime
mold,
single cell, several
nuclei
builds evolving net-
works
Nakagaki, Ya-
mada, Tóth,
Nature 2000

show video
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2008 Ig Nobel Prize

For achievements that first make people LAUGH
then make them THINK

COGNITIVE SCIENCE PRIZE: Toshiyuki Nakagaki, Ryo
Kobayashi, Atsushi Tero, Ágotá Tóth
for discovering that slime molds can solve puzzles.

REFERENCE: "Intelligence: Maze-Solving by an Amoeboid
Organism," Toshiyuki Nakagaki, Hiroyasu Yamada, and Ágota
Tóth, Nature, vol. 407, September 2000, p. 470.
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Mathematical Model (Tero et al.)

Physarum is a network of tubes (pipes);

flow (of liquids and nutrients) through a tube is determined
by concentration differences at endpoints of a tube, length
of tube, and diameter of tube;

tubes adapt to the flow through them: if flow through a tube
is high (low) relative to diameter of the tube, the tube grows
(shrinks) in diameter.

mathematics is the same as for flows in an electrical
network with time-dependent resistors.

Tero et al., J. of Theoretical Biology, 553 – 564, 2007
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Mathematical Model (Tero et al.)

G = (V ,E) undirected graph

each edge e has a positive length Le (fixed) and a positive
diameter De(t) (dynamic)

send one unit of current (flow) from s0 to s1 in an electrical
network where resistance of e equals

Re(t) = Le/De(t).

Qe(t) is resulting flow across e at time t

Dynamics:

Ḋe(t) =
dDe(t)

dt
= |Qe(t)| − De(t).
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The Questions

Does system convergence for all (!!!) initial
conditions?

How fast does it converge?

Details of the convergence process?

Beyond shortest paths?

Inspiration for distributed algorithms?
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Convergence against Shortest Path

Theorem (Convergence (SODA 12, J. Theoretical
Biology))

Dynamics converge against shortest path, i.e.,

potential difference between source and sink converges to
length of shortest source-sink path,
De → 1 for edges on shortest source-sink path,
De → 0 for edges not on shortest source sink path

this assumes that shortest path is unique; otherwise . . .

Miyaji/Onishi previously proved convergence for planar graphs
with source and sink on the same face
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Our Approach

analytical investigation of simple systems, in particular,
parallel links
experimental investigation (computer simulation) of larger
systems

to form intuition about the dynamics
to kill conjectures
to support conjectures

proof attempts for conjectures surviving experiments
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A Single Link (Miyaji/Ohnishi)

ts e e has length L and diameter D

Q = 1

Ḋ = 1− D

D = 1 + (D(0)− 1)e−t → 1

Diameter of e converges to 1, resistance of e converges to L.
Thus, potential difference between source and sink converges
to L (= length of shortest source-sink path)
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Parallel Links (Miyaji/Ohnishi 07)

e1

s1

ek

s0 .
.

.

parallel links with lengths L1 < L2 < . . . < Lk

D1 → 1, D2, . . . ,Dk → 0

ps0 − ps1 → L1

but D2, . . . , Dk−1 do not necessarily converge monotonically
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What did Evolution Optimize?

Evolution optimized dynamics so as to achieve a global
objective. Which? (Lyapunov Function)

First idea: the energy of the flow
∑

e Qe∆e decreases over time

not true, even for parallel links

Theorem
For the case of parallel links:∑

i

QiLi ,

∑
i DiLi∑

i Di
, and (ps − pt )

∑
i

DiLi

decrease over time

computer experiment: the obvious generalizations (replace i by
e ) to general graphs do not work
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A not so Obvious Generalization

e1

s1

ek

s0 .
.

.

∑
i DiLi∑

i Di
⇒

∑
e DeLe

minimum total diameter of a s0-s1 cut
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What did Evolution Optimize?

Computer experiment:

V :=
∑

e DeLe

minimum total diameter of a s0-s1 cut
decreases

Theorem (Lyapunov Function)

V +
(∑

e∈δ({ s0 }) De − 1
)2

decreases.

Derivative of V (essentially) satisfies

V̇ ≤ −c ·
∑

e

(De − |Qe|)2.

Proof uses min-cut-max-flow and . . .
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V

t

Statespace = R^E 

V decreases and stays positive⇒ V̇ → 0

V̇ ≤ −c ·
∑

e(De − |Qe|)2

|De − |Qe|| goes to zero for all e

Qe = De∆e/Le and hence ∆e ≈ Le for Qe(t) non-vanishing
and t large

∆s0s1 converges to length of some source-sink path

∆s0s1 converges to length of shortest path

. . .
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Convergence against Shortest Path

Corollary (Convergence)
Dynamics converge against shortest path, i.e.,

potential difference between source and sink converges to
length of shortest source-sink path,
De → 1 for edges on shortest source-sink path,
De → 0 for edges not on shortest source sink path

this assumes that shortest path is unique; otherwise, . . .

Miyaji/Onishi previously proved convergence for planar graphs.
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Discretization and Speed of Convergence

De(t + 1) = De(t) + h(|Qe(t)| − De(t))

Theorem
Let opt be the length of shortest source-sink path.

Let ε > 0 be arbitrary. Set h = ε/(2mL), where L is largest edge
length. Assume LP∗ ≥ 1.

After Õ(nmL2/ε3) iterations, solution is 1 + ε-optimal, i.e.,
V =

∑
e LeDe is at most (1 + ε)opt .

Arithmetic with O(log(nL/ε)) bits suffices.
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Nonuniform Physarum

Ḋe(t) = |Qe(t)|−aeDe(t)

ae reactivity of e

No convergence
proof
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Nonuniform Directed Physarum

Ḋe(t) = Qe(t)− aeDe(t)

Theorem
Ito/Johansson/Nakagaki/Tero (2011) prove convergence for
uniform case (ae = 1 for all e). We generalize their proof

converges to shortest path according to length function aeLe

discretization converges in Õ(nmL2/ε3) iterations to 1 + O(ε)
optimal solution (our proof requires uniformity)
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The Transportation Problem

undirected graph G = (V ,E)

b : V → R such that
∑

v bv = 0

v supplies flow bv if bv > 0

v extracts flow |bv | if bv < 0

find a cheapest flow where cost of sending f units across an
edge of length L is L · f

Dynamics of Physarum solves transportation problem.

De’s converge against a mincost solution of transportation
problem.

proof requires a non-degeneracy assumption
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Open Problems I
nonuniform Physarum, convergence, discretization,
complexity

nonuniform directed Physarum, discretization, complexity

dependency on L or log L?

Physarum apparently can do more, e.g., network design.

inspiration for the design of distributed algorithms and/or
approximation algs for NP-complete problems
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Network Design: Science 2010
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My Current Projects

Understand the principles of network formation. What does the
network optimize?

Nonuniform Versions of Physarum

Can I use Physarum as an inspiration for approximation
algorithms?

Thank you for Listening
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