

# The Curse of Too Many Questions

#### Eli Upfal















WE FOUND NO

BUT WE'RE

PLAYING

... FINE.















WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P>0.05).



WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P > 0.05)



WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P<0.05).



WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P>0.05).



WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN LICAC JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P > 0.05)



WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P > 0.05).



WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P>0.05).







WE FOUND NO

LINK BETWEEN



WE FOUND NO

LINK BETWEEN









#### **Data Mining**

- Discover hidden patterns, correlations, association rules, etc., in large data sets
- When is the discovery interesting, important, significant?
- We develop rigorous mathematical/ statistical approach



# Frequent Itemsets

- Dataset D of transactions t<sub>j</sub> (subsets) of a base set of items I, (t<sub>j</sub> ⊆ 2<sup>I</sup>).
- Support of an itemsets X = number of transactions that contain X.
- I = set of mutations
- T\_j = the set of mutations found in patient J

#### Frequent Itemsets

- Discover all itemsets with significant support.
- Fundamental primitive in data mining,
   Data Bases (association rules), network security, computational biology, ...





© Copyright 2002, Unistel Medical Laboratories, Unistel Group Holdings (Pty) Ltd



#### Significance

- What support level makes an itemset significantly frequent?
  - Minimize false positive and false negative discoveries
  - Improve "quality" of subsequent analyses
- How to narrow the search to focus only on significant itemsets?
  - Reduce the possibly exponential time search

#### Statistical Model

#### Input:

- $\mathbf{D}$  = a dataset of  $\mathbf{t}$  transactions over  $|\mathbf{I}| = \mathbf{n}$
- For i∈I, let n(i) be the support of {i} in D.
- f<sub>i</sub>= n(i)/t = frequency of i in D
- **H**<sub>0</sub> Model:
  - $\mathbf{D}$  = a dataset of  $\mathbf{t}$  transactions,  $|\mathbf{I}| = \mathbf{n}$
  - Item i is included in transaction j with probability f<sub>i</sub> independent of all other events.

#### **Statistical Tests**

- H<sub>0</sub>: null hypothesis the support of no itemset is significant with respect to D
- $H_1$ : alternative hypothesis, the support of itemset  $\{X_1, X_2, ..., X_r\}$  is significant. It is unlikely that this support comes from the distribution of D
- Significance level:
  - $\alpha = \text{Prob}(\text{ rejecting } H_0 \text{ when it's true })$

#### Naïve Approach

- Let X={x<sub>1</sub>,x<sub>2</sub>,...x<sub>r</sub>},
- $\mathbf{f_x} = \mathbf{\Pi_j} \mathbf{f_j}$ , probability that a given itemset is in a given transaction
- $s_x$  = support of X, distributed  $s_x$  ~  $B(t, f_x)$
- Reject H<sub>0</sub> if:
   Prob(B(t, f<sub>x</sub>) ≥ s<sub>x</sub>) = p-value ≤ α

# Naïve Approach

#### Variations:

- R=support /E[support in D]
- R=support E[support in D]
- **Z**-value =  $(s-E[s])/\sigma[s]$
- many more...

| Measure (Symbol)            | Definition                                                                                                                                                                                                                                                            |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Correlation $(\phi)$        | $\frac{Nf_{11}-f_{1}+f_{+1}}{\sqrt{f_{1+}f_{+1}f_{0}+f_{+0}}}$                                                                                                                                                                                                        |
| Odds ratio $(\alpha)$       | $(f_{11}f_{00})/(f_{10}f_{01})$                                                                                                                                                                                                                                       |
| Kappa $(\kappa)$            | $\frac{Nf_{11}+Nf_{00}-f_{1+}f_{+1}-f_{0+}f_{+0}}{N^2-f_{1+}f_{1+}-f_{0+}f_{+0}}$                                                                                                                                                                                     |
| Interest $(I)$              | $(Nf_{11})/(f_{1+}f_{+1})$                                                                                                                                                                                                                                            |
| Cosine $(IS)$               | $(f_{11})/(\sqrt{f_{1+}f_{+1}})$                                                                                                                                                                                                                                      |
| Piatetsky-Shapiro $(PS)$    | $\frac{f_{11}}{N} - \frac{f_{1} + f_{+1}}{N^2}$                                                                                                                                                                                                                       |
| Collective strength $(S)$   | $\frac{f_{11}+f_{00}}{f_{1+}f_{+1}+f_{0+}f_{+0}} \times \frac{N-f_{11}+f_{+1}-f_{0+}f_{+0}}{N-f_{11}-f_{00}}$                                                                                                                                                         |
| Jaccard $(\zeta)$           | $f_{11}/(f_{1+}+f_{+1}-f_{11})$                                                                                                                                                                                                                                       |
| All-confidence $(h)$        | $\min\left[\frac{f_{11}}{f_{1+}}, \frac{f_{11}}{f_{+1}}\right]$                                                                                                                                                                                                       |
| Goodman-Kruskal $(\lambda)$ | $\frac{\sum_{j} \max_{k} f_{jk} + \sum_{k} \max_{j} f_{jk} - \max_{j} f_{j+} - \max_{k} f_{+k}}{2N - \max_{j} f_{j+} - \max_{k} f_{+k}}$                                                                                                                              |
| Mutual Information $(M)$    | $\sum_{i} \sum_{j} \frac{f_{ij}}{N} \log \frac{N f_{ij}}{f_{i+} f_{+j}}$                                                                                                                                                                                              |
|                             | $\min \left  -\sum_i \frac{f_{i+}}{N} \log \frac{f_{i+}}{N}, -\sum_j \frac{f_{j+}}{N} \log \frac{f_{j+}}{N} \right $                                                                                                                                                  |
| J-Measure $(J)$             | $\frac{f_{11}}{N}\log\frac{Nf_{11}}{f_{1+}f_{+1}} + \max\left[\frac{f_{10}}{N}\log\frac{Nf_{10}}{f_{1+}f_{+0}}, \frac{f_{01}}{N}\log\frac{Nf_{01}}{f_{0+}f_{+1}}\right]$                                                                                              |
| Gini index $(G)$            | $\max \left[ \frac{f_{1+}}{N} \times \left[ \left( \frac{f_{11}}{f_{1+}} \right)^2 + \left( \frac{f_{10}}{f_{1+}} \right)^2 \right] + \frac{f_{0+}}{N} \times \left[ \left( \frac{f_{01}}{f_{0+}} \right)^2 + \left( \frac{f_{00}}{f_{0+}} \right)^2 \right] \right]$ |
|                             | $-(\frac{f_{+1}}{N})^2 - (\frac{f_{+0}}{N})^2,$                                                                                                                                                                                                                       |
|                             | $\frac{f_{+1}}{N} \times \left[ \left( \frac{f_{11}}{f_{+1}} \right)^2 + \left( \frac{f_{01}}{f_{+1}} \right)^2 \right] + \frac{f_{+0}}{N} \times \left[ \left( \frac{f_{10}}{f_{+0}} \right)^2 + \left( \frac{f_{00}}{f_{+0}} \right)^2 \right]$                     |
|                             | $-(\frac{f_{1+}}{N})^2 - (\frac{f_{0+}}{N})^2$                                                                                                                                                                                                                        |
| Laplace $(L)$               | $\max\left[\frac{f_{11}+1}{f_{1+}+2}, \frac{f_{11}+1}{f_{+1}+2}\right]$                                                                                                                                                                                               |
| Conviction $(V)$            | $\max \left[ \frac{f_{1+}f_{+0}}{Nf_{10}}, \frac{f_{0+}f_{+1}}{Nf_{01}} \right]$                                                                                                                                                                                      |
| Certainty factor $(F)$      | $\max \left[ \frac{\frac{f_{11}}{f_{1+}} - \frac{f_{+1}}{N}}{\frac{1 - \frac{f_{+1}}{N}}{1 - \frac{f_{+1}}{N}}}, \frac{\frac{f_{11}}{f_{+1}} - \frac{f_{1+}}{N}}{1 - \frac{f_{1+}}{N}} \right]$                                                                       |
| Added Value $(AV)$          | $\max \left[ \frac{f_{11}}{f_{1+}} - \frac{f_{+1}}{N}, \frac{f_{11}}{f_{+1}} - \frac{f_{1+}}{N} \right]$                                                                                                                                                              |

### What's wrong? - example

- D has 1,000,000 transactions, over 1000 items, each item has frequency 1/1000.
- We observed that a pair {i,j} appears 7 times, is this pair statistically significant?
- In **D** (random dataset):
  - E[ support({i,j})] = 1
  - Prob( $\{i,j\}$  has support  $\geq 7$ )  $\simeq 0.0001$
- p-value 0.0001 must be significant!



## What's wrong? - example

- There are 499,500 pairs, each has probability 0.0001 to appear in 7 transactions in D
- The expected number of pairs with support ≥ 7 in D is ≈ 50, not such a rare event!
- Many false positive discoveries (flagging itemsets that are not significant)
- Need to correct for multiplicity of hypothesis.

## Multi-Hypothesis test

- Testing for significant itemsets of size  $\mathbf{k}$  involves testing simultaneously for  $\mathbf{m}$ : $\binom{n}{k}$  null hypothesis.
- H<sub>0</sub>(X) = support of X conforms with D
   s<sub>x</sub> = support of X, distributed: s<sub>x</sub> ~ B(t, f<sub>x</sub>)
- How to combine m tests while minimizing false positive and negative discoveries?

### The Statistics Approach

Correct but conservative: prefers false negative to false positive results.

Conservative - There is often nothing to report — no statistically significant discoveries









## Family Wise Error Rate (FWER)

- Family Wise Error Rate (FWER) =
   probability of at least one false positive
   (flagging a non-significant itemset as significant)
- Bonferroni method (union bound) test each null hypothesis with significance level α/m
- Too conservative many false negative does not flag many significant itemsets.



### False Discovery Rate (FDR)

- Less conservative approach
- V= number of false positive discoveries
- R= total number of rejected null hypothesis
  - = number itemsets flagged as significant

$$FDR = E[V/R]$$
 (FDR=0 when R=0)

 Test with level of significance α : reject maximum number of null hypothesis such that FDR ≤ α

## Standard Multi-Hypothesis test

Theorem (Benjamini and Yekutieli,'01). Assume that we are testing for m null hypotheses.

Let  $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(m)}$  be the ordered observed p-values of the m tests. To control of FDR at level  $\beta$ , define

$$\ell = \max \left\{ i \ge 0 : p_{(i)} \le \frac{i}{m \sum_{j=1}^{m} \frac{1}{j}} \beta \right\},\,$$

and reject the null hypotheses of tests  $(1), \ldots, (\ell)$ .

## Standard Multi-Hypothesis test

- Less conservative than Bonferroni method:
  - i α/m VS α/m
- For  $\mathbf{m} = \binom{n}{k}$ , still needs a very small individual p-value to reject an hypothesis

#### **Alternative Approach**

- Q(k, s<sub>i</sub>) = observed number of itemsets of size k and support ≥ s<sub>i</sub>
- p-value =
  the probability of Q(k, s<sub>i</sub>) in D
- Fewer hypothesis
- How to compute the p-value? What is the distribution of the number of itemsets of size
   k and support ≥ s<sub>i</sub> in D ?

[JACM 2012 - Kirsch, Mitzenmacher, Pietracaprina, Pucci, U, Vandin]



#### **Alternative Statistical Test**

- Instead of testing the significance of the support of individual itemsets we test the significance of the number of itemsets with a given support
- The null hypothesis distribution is specified by the Poisson approximation result
- Reduces the number of simultaneous tests
- More powerful test less false negatives

#### Test I



- Define  $\alpha_1, \alpha_2, \alpha_3, \dots$  such that  $\sum \alpha_i \leq \alpha$
- For  $i=0,...,log(s_{max}-s_{min})+1$ 
  - $s_i = s_{min} + 2^i$
  - Q(k, s<sub>i</sub>) = observed number of itemsets of size k and support ≥ s<sub>i</sub>
  - $H_0(k,s_i) = "Q(k,s_i)$  conforms with Poisson( $\lambda_i$ )"
  - Reject H₀(k,sᵢ) if p-value < αᵢ</p>

# Test I

- Let s\* be the smallest s such that H<sub>0</sub> (k,s) rejected by Test I
- With confidence level  $\alpha$  the number of itemsets with support  $\geq s^*$  is significant

Some itemsets with support ≥ s\* could still be false positive

#### Test II

■ Define  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ ,... such that  $\sum \beta_i \leq \beta$ 

■ Reject  $H_0(k,s_i)$  if: p-value  $< α_i$  and  $Q(k,s_i) \ge λ_i / β_i$ 

- Let s\* be the minimum s such that H<sub>0</sub>(k,s) was rejected
- If we flag all itemsets with support ≥ s\*
  as significant, FDR ≤ β

#### **Proof**

- $V_i$  = false discoveries if  $H_0(k,s_i)$  first rejected
- $\mathbf{E_i} = \mathbf{H_0(k,s_i)}$  rejected"

$$FDR = \sum_{i=0}^{h-1} E\left[\frac{V_i}{Q_{k,s_i}}\right] \mathbf{Pr}(E_i, \bar{E}_{i-1}, \dots, \bar{E}_0)$$

$$\leq \sum_{i=0}^{h-1} \frac{E[X_i \mid E_i \bar{E}_{i-1}, \dots, \bar{E}_0]}{\lambda_i/\beta_i} \mathbf{Pr}(E_i, \bar{E}_{i-1}, \dots, \bar{E}_0)$$

$$= \sum_{i=0}^{h-1} \frac{\sum_{j} j \mathbf{Pr}(X_i = j, E_i, \bar{E}_{i-1}, \dots, \bar{E}_0)}{\lambda_i/\beta_i}$$

$$\leq \sum_{i=0}^{h-1} \frac{\beta_i \lambda_i}{\lambda_i} \leq \sum_{i=0}^{h-1} \beta_i \leq \beta.$$

## The Theoretical CS Approach

- The Vapnik / PAC Learning approach
- Uniform Convergence Samples







- Let C be a collection of hypotheses (concepts).
- We want a minimum sample (training set) that includes, for each wrong concept, at least one example demonstrating that this concept is wrong.
- At least for concepts that are "significantly wrong".



- Classification problems on a set of items I
- A concept is a subset of items classified
   True
- Training examples are generated by a distribution **D**
- Algorithm is measures on the same distribution **D**

A concept class (model) is  $(m, \varepsilon, \delta)$ -PAC-learnable iff there is an algorithm that for any distribution **D** 

- given m random inputs from for D
- with probability **1**  $\delta$ , outputs a concept
- concept is **correct** with probability  $1-\varepsilon$  on examples drawn randomly from D.

- A concept class with **VC-dimension d** is  $(\varepsilon, \delta)$ -PAC-learnable with
- $\mathbf{m} = \Theta((\mathbf{d} + \mathbf{log} \ \mathbf{1} / \delta) / \varepsilon)$  samples

A sample of that size is an  $\varepsilon$  — **net** - a sample that hits any set of size (measure)  $\geq \varepsilon$ 

## Vapnik-Chervonenkis Dimension

- Combinatorial property of a collection of subsets from a domain
- Measures the "richness", "expressivity" of the subsets
- A Range set is a pair (X,R)
  - X set of items
  - R collection of subset of X
- The VC-dimension of (X,R) is the maximal set size d such that all its 2<sup>d</sup> partitions are obtained by intersections with sets in R
- The sample "converge uniformly" on all concepts in the class.

#### $\varepsilon$ - Sampler

- estimating the sizes of all subsets
- Given a collection of sets (a range space), an  $\varepsilon$  Sampler is a subset of elements that, with probability 1-  $\delta$ , gives an  $\varepsilon$  estimate of the sizes of all sets.
- If the VC-dimension of the collection of sets is d, then a random sample of size  $f(d, \varepsilon, \delta)$  is an  $\varepsilon$ -sampler.

# Are VC-Dimension Bounds Tight?

- VC dimension is a combinatorial bound that "ignores" the data distribution
- Often hard to compute
- Rademacher Complexity....

#### The Practical (AI) Approach

- Cross Validation compare results on subsets of the sample.
- If subsets are not disjoint estimates the variance in the sample
- Not a good predictor for "generalization" error.