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Data Mining 

n  Discover hidden patterns, correlations, 
association rules, etc., in large data sets 

n  When is the discovery interesting, 
important, significant? 

n  We develop rigorous mathematical/
statistical approach 



Frequent Itemsets 

n  Dataset D of transactions tj (subsets) of a 
base set of items I, (tj ⊆ 2I). 

n  Support of an itemsets X = number of 
transactions that contain X. 

n  I = set of mutations 
n  T_j = the set of mutations found in 

patient J 



Frequent Itemsets 

n  Discover all itemsets with significant 
support. 

n  Fundamental primitive in data mining, 
Data Bases (association rules), network 
security, computational biology, … 

  



Significance 

n  What support level makes an itemset 
significantly frequent?  
n  Minimize false positive and false negative 

discoveries 
n  Improve “quality” of subsequent analyses 

n  How to narrow the search to focus only on 
significant itemsets? 
n  Reduce the possibly exponential time search 



Statistical Model 

n  Input: 
n  D = a dataset of t transactions over |I|=n 
n  For i∊I, let n(i) be the support of {i} in D.   
n  fi= n(i)/t = frequency of i in D 

n  H0 Model: 
n  D = a dataset of t transactions, |I|=n 
n  Item i is included in transaction j with 

probability fi independent of all other events. 



Statistical Tests 

n  H0 : null hypothesis – the support of no 
itemset is significant with respect to D  

n  H1: alternative hypothesis, the support of 
itemset {X1, X2,…,Xr} is significant. It is 
unlikely that this support comes from the 
distribution of D 

n   Significance level: 
 α = Prob( rejecting H0 when it’s true ) 

 



Naïve Approach 

n  Let X={x1,x2,…xr},  
n  fx =∏j fj,  probability that a given itemset is 

in a given transaction 
n  sx  = support of X, distributed sx ∼ B(t, fx) 

n  Reject H0 if: 
       Prob(B(t, fx) ≥ sx) = p-value ≤ α 



Naïve Approach 

n  Variations:  
n  R=support /E[support in D] 
n  R=support - E[support in D] 
n  Z-value = (s-E[s])/ϭ[s] 
n  many more… 



n  D has 1,000,000 transactions, over 1000 
items, each item has frequency 1/1000. 

n  We observed that a pair {i,j} appears 7 
times, is this pair statistically significant? 

n  In D (random dataset): 
n  E[ support({i,j}) ] = 1 
n  Prob({i,j} has support ≥ 7 ) ≃ 0.0001 

n   p-value 0.0001  - must be significant! 

What’s wrong? – example  



What’s wrong? – example  

n  There are 499,500 pairs, each has 
probability 0.0001 to appear in 7 
transactions in D 

n  The expected number of pairs with 
support ≥ 7 in D is ≃ 50, 

   not such a rare event! 
n  Many false positive discoveries (flagging 

itemsets that are not significant) 
n  Need to correct for multiplicity of 

hypothesis. 



Multi-Hypothesis test 

n  Testing for significant itemsets of size k 
involves testing simultaneously for  

   m=      null hypothesis. 
n  H0

 (X) = support of X conforms with D 
   sx  = support of X, distributed: sx ∼ B(t, fx) 
n  How to combine m tests while minimizing 

false positive and negative discoveries? 



The Statistics Approach 

Correct but conservative: 
prefers false negative to false 
positive results. 
 
Conservative - There is often 
nothing to report – no 
statistically significant 
discoveries  



Family Wise Error Rate (FWER) 

n  Family Wise Error Rate (FWER) = 
probability of at least one false positive 

    (flagging a non-significant itemset as significant) 

n  Bonferroni method (union bound) – test 
each null hypothesis with significance level 
α/m 

n  Too conservative – many false negative – 
does not flag many significant itemsets. 



False Discovery Rate (FDR) 

n  Less conservative approach 
n  V= number of false positive discoveries 
n  R= total number of rejected null hypothesis 
     = number itemsets flagged as significant 

n  Test with level of significance α : reject 
maximum number of null hypothesis such 
that FDR ≤ α 

FDR = E[V/R]      (FDR=0 when R=0) 



Standard Multi-Hypothesis test 



Standard Multi-Hypothesis test 

n  Less conservative than Bonferroni method: 
n  iα/m VS α/m 

n  For m=       , still needs a very small 
individual p-value to reject an hypothesis 

 



Alternative Approach 

n  Q(k, si) = observed number of itemsets of size k 
and support ≥ si 

n  p-value =                                            
the probability of Q(k, si)  in D 

n  Fewer hypothesis 
n  How to compute the p-value? What is the 

distribution of the number of itemsets of size 
k and support ≥ si  in D ? 

 

[JACM 2012 - Kirsch, Mitzenmacher, Pietracaprina, Pucci, U, Vandin]

  



Alternative Statistical Test 

n  Instead of testing the significance of the 
support of individual itemsets we test the 
significance of the number of itemsets 
with a given support 

n  The null hypothesis distribution is specified 
by the Poisson approximation result 

n  Reduces the number of simultaneous tests 
n  More powerful test – less false negatives 



Test I 

n  Define α1, α2, α3, …  such that ∑αi≤ α 
n  For i=0,…,log (smax – smin ) +1  

n  si= smin +2i 

n  Q(k, si) = observed number of itemsets of 
size k and support ≥ si 

n  H0(k,si) = “Q(k,si) conforms with 
Poisson(λi)” 

n  Reject H0(k,si) if p-value < αi 



Test I 

n  Let s* be the smallest s such that  
   H0 (k,s) rejected by Test I 
n  With confidence level α the number of 

itemsets with support ≥ s* is significant 

n  Some itemsets with support ≥ s* could 
still be false positive 



Test II 

n  Define β1, β2, β3,… such that ∑ βi≤ β  

n  Reject H0 (k,si) if: 
     p-value < αi  and Q(k,si)≥ λi / βi 

 
n  Let s* be the minimum s such that 

H0(k,s) was rejected 
n  If we flag all itemsets with support ≥ s* 

as significant, FDR ≤ β 



Proof 

n  Vi = false discoveries if H0(k,si) first rejected 
n  Ei = “H0(k,si) rejected” 



The Theoretical CS Approach 

n  The Vapnik / PAC Learning 
approach 

n  Uniform Convergence 
Samples 



 
Uniform Convergence  

n  Let C be a collection of hypotheses 
(concepts). 

n  We want a minimum sample (training set) 
that includes, for each wrong concept, at 
least one example demonstrating that this 
concept is wrong. 

n  At least for concepts that are “significantly 
wrong”. 



     Uniform Convergence 

n  Classification problems on a set of items I 
n  A concept is a subset of items classified 

True 
n  Training examples are generated by a 

distribution D 
n  Algorithm is measures on the same 

distribution D 



      Uniform Convergence  

A concept class (model) is (m,ε,δ)-PAC-
learnable iff there is an algorithm that for 
any distribution D 
n  given m random inputs from for D 
n  with probability 1- δ, outputs a concept  
n  concept is correct with probability 1-ε 

on examples drawn randomly from D. 



      Uniform Convergence  

n  A concept class with VC-dimension d is 
(ε,δ)-PAC-learnable with  

n  m=Θ((d+log 1/δ)/ε) samples 

A sample of that size is an ε – net - 
  a sample that hits any set of size 
(measure) ≥ε 



Vapnik-Chervonenkis Dimension 
●  Combinatorial property of a collection of subsets 

from a domain 
●  Measures the “richness”, “expressivity” of the 

subsets 
●  A Range set is a pair (X,R) 

●  X – set of items 
●  R – collection of subset of X 

●  The VC-dimension of (X,R) is the maximal set size d 
such that all its 2d partitions are obtained by 
intersections with sets in R 

●  The sample “converge uniformly” on all concepts 
in the class. 



ε - Sampler 

●  estimating the sizes of all subsets 
●  Given a collection of sets (a range 

space), an   ε – Sampler is a subset of 
elements that, with probability 1- δ, 
gives an ε – estimate of the sizes of all 
sets. 

n  If the VC-dimension of the collection of 
sets is d, then a random sample of size 
f(d,ε,δ) is an ε-sampler. 



Are VC-Dimension Bounds 
Tight? 

n  VC – dimension is a combinatorial bound 
that “ignores” the data distribution 

n  Often hard to compute 
n  Rademacher Complexity…. 



The Practical (AI) Approach 

n  Cross Validation – compare results on 
subsets of the sample. 

n  If subsets are not disjoint estimates the 
variance in the sample 

n  Not a good predictor for “generalization” 
error. 


