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Outline - What I'll try to cover...

The basic bounds: Bernstein, Chernoff, Hoeffding,
Azuma-Hoeffding, McDiarmid. How to create your own
bound....

The Monte-Carlo method and MCMC

The curse of too many questions: the multi-hypothesis
problem and genome-wide association studies

Two computational biology applications: HotNet and Dendrix



It's (almost) all in the book:

Probability and Computing

Randomized Algorithms and Probabilistic Analysis

Michael Mitzenmacher
) Eli Upfal
o VLAY L,

Expanded second edition coming soon.



Large Deviation Bounds for CS Analysis:

Bernstein Inequality: the basic scheme
Chernoff bound: independent, Bernoulli random variables
Hoeffding bound: independent, bounded r.v.'s

Azuma-Hoeffding bound: non-independent, bounded,
martingale sequence

McDiarmid bound: a Doob martingale on a function with
bounded variation.



Why Special Probabilistic Tools for CS?

A typical probability theory statement:
Theorem (The Central Limit Theorem)

Let Xi,...,X, be independent identically distributed random
variables with common mean ji and variance 0. Then

S X — 1 (7
lim Pr(==t 2 gy = / /2t
n—00 a'ﬁ 27 —c9

A typical CS probabilistic tool:
Theorem (Chernoff Bound)

Let Xi,...,X, be independent Bernoulli random variables such
that Pr(X; = 1) = p;, then



We build on Basic Probability Theory

Reminder:

Theorem (Markov Inequality)

If a random variable X is non-negative (X > 0) then

Prob(X > a) < E[aX].

Theorem (Chebyshev's Inequality)

For any random variable X.

Var[X]

Prob(|X — E[X]| > a) < o

Both bound are general but relatively weak.



The Basic ldea of Large Deviation Bounds:

For any random variable X, by Markov inequality we have:
For any t > 0,

E tX
Pr(X > a) = Pr(eX > %) < [:ta ]
Similarly, for any t < 0
E tX
Pr(X < a) = Pr(e™ > e%?) < @.

eta



The General Scheme:

We obtain specific bounds for particular conditions/distributions by

® computing E[e™X]
@ optimizing
E tX
Pr(X > a) < min [¢”"]
t>0 et?
E[etX]

© symplifying



Moment Generating Function

Definition

The moment generating function of a random variable X is defined
for any real value t as

Mx(t) = E[e®™].



Theorem

Let X be a random variable with moment generating function
Mx(t). Assuming that exchanging the expectation and
differentiation operands is legitimate, then for all n > 1

E[X"] = MY (0),

where /\/l)(<")(0) is the n-th derivative of Mx(t) evaluated at t = 0.

Proof.

M)(t) = E[X"etX].

Computed at t = 0 we get

M) (0) = E[X7].



Theorem
Let X and Y be two random variables. If

Mx(t) = My(t)

for all t € (—0,0) for some § > 0, then X and Y have the same
distribution.

Theorem

If X and Y are independent random variables then

Mx 1y (t) = Mx(t)My(t).

Mx 1y (t) = E[e!X+Y)] = E[eX|E[e!Y] = Mx (t)My (t).



Chernoff Bound for Sum of Bernoulli Trials

Let Xi,...,X, be a sequence of independent Bernoulli trials with
Pr(Xi =1) = p;. Let X =", Xj, and let

p=EX]=E|> X| =D EX]=> p.
i=1 i=1 i=1
For each X;:
Mx;(t) Ele™]
= pie' +(1-pi)
= 1+pi(ef-1)
< epi(e’=1)



Mx (t) = E[e¥i] < ePie™-1),

1

Taking the product of the n generating functions we get for
X = 27:1 Xi

Mx(t) = []Mx(0)
i=1

n
< [
i=1

— ezl'":l pi(ef—1)

— e(etil)u



Mx(t) = E[e™] = (=10

Applying Markov's inequality we have for any t > 0

Pr(X > (1+08)u) = Pr(e™X > et(+om)
_ E[etX]
- et(1+)p
e(etfl)ﬂ
= et(1+0)u

For any 6 > 0, we can set t = In(1+J) > 0 to get:

e5 "
Pr(X > (14 6)u) < <(1+<5)(1+5’> .



Let Xi,...,X, be independent Bernoulli random variables such
that Pr(X; =1) = p;.
e For any § > 0,

eé ©
Pr(X > (1 +&)u) < ((1+5)1+5> : (1)
e For0< o<1,
Pr(X > (1+ 6)p) < e H9°/3, (2)

e for R > 6pu,
Pr(X > R) <27F. (3)



Mx(t) = E[e™] = el

Applying Markov's inequality we have for any t > 0

Pr(X > (1+08)u) = Pr(e™X > et(+om)
_ E[etx]
- et(1+)p
ele'=1)u
= et(1+0)u

For any § > 0, we can set t = In(1+J) > 0 to get:

65 M
Pr(X > (1 +5)M) < <(1_~_5)(1+6)> .

This proves (1).



We show that for 0 < § < 1,
5
e _52/3
(1+ 0)(1+9) e

or that F(6) =0 —(L+0)In(L+0)+62/3<0
in that interval. Computing the derivatives of 7(J) we get

, B _1+5_ g . g
f'(6) = 1 1535 In(1+5)+35— |n(1+5)+35,
” 12
f'(6) = 1+5+3.

f"(6) < 0for0<d<1/2, and f"(5) >0 for § > 1/2.

f'(0) first decreases and then increases over the interval [0, 1].
Since f/(0) = 0 and /(1) < 0, f(§) < 0 in the interval [0, 1].
Since (0) = 0, we have that (J) < 0 in that interval.

This proves (2).



For R > 6, § > 5.

Pr(X > (14 0)p)
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that proves (3).



Theorem

Let Xi,..., X, be independent Bernoulli random variables such
that Pr(X; =1) = p;. Let X =57, Xi and = E[X].
For0 <4 <1:

o? 7
Pr(X < (1—06)u) < <(15)(15)) . (4)

Pr(X < (1—6)u) < e H9°/2 (5)



Using Markov's inequality, for any t < 0,

Pr(X < (1—08)u) = Pr(eX > ell-0tm)
E[etX]
et(1=0)u
ele'=1)u

IN

IN

For0 <o <1, wesett=In(1l—-0)<0 to get:

o0 u
Pr(X <(1-0)u) < ((1—5)(1_5))

This proves (4).
We need to show:

f(6) = —6—(1—0)In(1 —6) + %52 <0.



We need to show:

f(6) = —6 — (1 —0)In(1 —6) + %52 <0.

Differentiating () we get

f'(6) = In(1—136)+4,
f'(6) = ———=+1.

Since () < 0 for 6 € (0,1), '(9) decreasing in that interval.

Since /(0) = 0, f/(§) < 0 for 6 € (0,1). Therefore £(9) is non

increasing in that interval.

f(0) = 0. Since 7(0d) is non increasing for § € [0,1), f(§) <0 in
that interval, and (5) follows.



Example: Coin flips

Let X be the number of heads in a sequence of n independent fair

coin flips.

1
Pr(‘X—g‘zzJW)
:Pr<X2n<1+ 6'””))

2 n
+Pr(xgn<1— 6'””))
2 n
_1n6lnn _1n6lnn 2
<e 32 n 4+e 220 <—,
n



Markov Inequality gives

prxs>3n) <2 2
4 )~ 3n/4 — 3

Using the Chebyshev’s bound we have:

M(X—%Zﬂ)g
4

(-2 - mlxz3(eed)
(x5

IN A
N
o



Example: Estimating a Parameter

Evaluating the probability that a particular DNA mutation
occurs in the population.

Given a DNA sample, a lab test can determine if it carries the
mutation.

The test is expensive and we would like to obtain a relatively
reliable estimate from a minimum number of samples.

p = the unknown value;
n = number of samples, pn had the mutation.

Given sufficient number of samples we expect the value p to
be in the neighborhood of sampled value p, but we cannot
predict any single value with high confidence.



Confidence Interval

Instead of predicting a single value for the parameter we give an
interval that is likely to contain the parameter.

Definition
A 1 — g confidence interval for a parameter T is an interval
[p— 0, P+ I] such that

Pr(T €[p—0,p+46]) >1—q.

We want to minimize 26 and g, with minimum n.
Using pn as our estimate for pn, we need to compute § and g such
that

Pr(p € [p— 8.5+ 0]) = Pr(np € [n(p — 6), n(p+9)]) = 1 — q.



e The random variable here is the interval [p — J, p + d] (or the
value p), while p is a fixed (unknown) value.

e np has a binomial distribution with parameters n and p, and

E[p] = p. If p ¢ [p— 9, p+ d] then we have one of the
following two events:

@ Ifp<p—20, then np>n(p+9)=np (1+ %) ,or np is larger
than its expectation by a % factor.
@ If p>p+0,then np < n(pfd):np<lf%>,and np is

smaller than its expectation by a % factor.



Pr(p & [p—0,p +0])

_ Pr<nﬁ§”P(1_2>>+Pr<nﬁ2np<1+f’>>

N 2 N 2
1 5 1 R
< e7§”p<ﬁ) _|_e7§"p(5>
_ns? _ns?
= e 2 +e 3,

But the value of p is unknown, A simple solution is to use the fact
that p <1 to prove

ns?

n2
Pr(pg[p—0.p+o]) <e s +e 5.

: 6% _ns? :
Setting g =€ 2 + e 3, we obtain a tradeoff between ¢, n, and

the error probability g.



If we want to obtain a 1 — g confidence interval [p — ¢, p + J],

3. 2
n25f2|n&

samples are enough.



Chernoff’s vs. Chebyshev's Inequality

Assume for all i we have p; = p;1 — p; = q.

n=E[X] =np

Var[X] = npq

If we use Chebyshev's Inequality we get

npq _ npq q

'Dr(’X_:U“ > 5/1) < W - 52n2p2 - 52M

Chernoff bound gives

Pr(|X — p] > dp) < 2e H%/3,



Set Balancing

Given an n x n matrix A with entries in {0,1}, let

ail a2 ... ain b1 c1
ani dno don b2 Co
anl am2 ... amn b, Cn

Find a vector b with entries in {—1,1} that minimizes

[14b]|o, = max |cil.
=1,...,n

1



Theorem

For a random vector b, with entries chosen independently and with
equal probability from the set {—1,1},

Pr(H.AI_JHOO >V4nlnn) < g
n

The Y7, ajib;i (excluding the zero terms) is a sum of independent
—1,1 random variable. We need a bound on such sum.



Chernoff Bound for Sum of {—1,+41} Random
Variables

Theorem

Let Xi, ..., X,, be independent random variables with

Pr(X = 1) = Pr(X; = —1) = %

Let X = 1 X;. Foranya>0,

a

Pr(X > a) < e an.

de Moivre — Laplace approximation: For any k, such that
|k —np| < a

<”> k(1 — p)nk I =
J— % e n, —
k)P P 2wnp(1 — p)



For any t > 0,

1 1
E[etX"] = §et -+ Eeit.
t2 t
et =14+ t+_—4- 4+ —+...
2! il
and ]
t2 it
=l-tdo+- +(_1)ﬁ+
Thus,
tX, t t t2i
E i1 — Tt
[e""] ,e T3¢ > o)
i>0
t2
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n
E[etX] _ H E[etX'] < ent2/2,
i=1

_ E[etX]

< et2n/2—ta
- eta — :

Pr(X > a) = Pr(e™ > %)

Setting t = a/n yields



By symmetry we also have

Corollary

Let X1, ..., X, be independent random variables with

1
Pr(X,- = 1) = Pr(X,- = —1) = 5
Let X =37, X;. Then for any a > 0,

2

Pr(|X| > a) < 2e” 2.



Application: Set Balancing

Theorem

For a random vector b, with entries chosen independently and with
equal probability from the set {—1,1},

Pr(||AB|lo > VanTnn) < 2 (6)

S

e Consider the i-th row &; = a; 1, ...., aj .
e Let k be the number of 1's in that row.
© Zi=3 @b

If Kk <+/4nlnn then clearly Z; < v/4nlnn.



If kK > +/4nlog n, the k non-zero terms in the sum Z; are
independent random variables, each with probability 1/2 of being
either +1 or —1.

Using the Chernoff bound:

2
Pr{|Z,-\ > +/4nlog n} < e 4nlogn/(2k) < =1

where we use the fact that n > k.
The result follows by union bound (n rows).



Hoeffding's Inequality

Large deviation bound for more general random variables:

Theorem (Hoeffding's Inequality)

Let Xi,...,X, be independent random variables such that for all
1<i<n, E[X]]=p and Pr(a < X; < b)=1. Then

\fZX p] > €) < 220/ (b=2)°

Lemma

(Hoeffding's Lemma) Let X be a random variable such that
Pr(X € [a,b]) =1 and E[X] = 0. Then for every A > 0,

E[E)\X] < e/\2(afb)2/8'



Proof of the Lemma

Since f(x) = ™ is a convex function, for any o € (0,1) and
x € [a, b],
X) < af(a)+ (1 — a)f(b).

f(
Thus, for a = 2=% € (0, 1),

b—x X—a
e)\XS e)\a_|_ e)\b
b—a b—a

Taking expectation, and using E[X] = 0, we have

E[e’\X] < bﬁaeAa T bjaeAb < N(b—a)2/8.



Proof of the Bound

Let Z; = X; —E[X;]and Z =137 | X;.

n ) _22
Pr(Z = ) < e VE[e¥] < e [ E[eM/7] < e 5

i=1

Set A\ = (bA'_”e)z gives

1 n
Pr(I D X — il = €) = Pr(Z > ) < 2720/ (0-oF
i=1



A More General Version

Theorem

Let Xi,..., X, be independent random variables with E[X;] = 1;
and Pr(B; < X; < Bi + ¢;) = 1, then

n n 22
IS - o 2 9 < e T
=i =1L



