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Outline - What I’ll try to cover...

• The basic bounds: Bernstein, Chernoff, Hoeffding,
Azuma-Hoeffding, McDiarmid. How to create your own
bound....

• The Monte-Carlo method and MCMC

• The curse of too many questions: the multi-hypothesis
problem and genome-wide association studies

• Two computational biology applications: HotNet and Dendrix



It’s (almost) all in the book:

Expanded second edition coming soon.



Large Deviation Bounds for CS Analysis:

• Bernstein Inequality: the basic scheme

• Chernoff bound: independent, Bernoulli random variables

• Hoeffding bound: independent, bounded r.v.’s

• Azuma-Hoeffding bound: non-independent, bounded,
martingale sequence

• McDiarmid bound: a Doob martingale on a function with
bounded variation.



Why Special Probabilistic Tools for CS?

A typical probability theory statement:

Theorem (The Central Limit Theorem)

Let X1, . . . ,Xn be independent identically distributed random
variables with common mean µ and variance σ2. Then

lim
n→∞

Pr(

∑n
i=1 Xi − nµ

σ
√

n
≤ z) =

1√
2π

∫ z

−∞
e−t

2/2dt.

A typical CS probabilistic tool:

Theorem (Chernoff Bound)

Let X1, . . . ,Xn be independent Bernoulli random variables such
that Pr(Xi = 1) = pi , then

Pr(
n∑

i=1

Xi ≥ (1 + δ)
n∑

i=1

pi ) ≤ e−µδ
2/3.



We build on Basic Probability Theory

Reminder:

Theorem (Markov Inequality)

If a random variable X is non-negative (X ≥ 0) then

Prob(X ≥ a) ≤ E [X ]

a
.

Theorem (Chebyshev’s Inequality)

For any random variable X .

Prob(|X − E [X ]| ≥ a) ≤ Var [X ]

a2

Both bound are general but relatively weak.



The Basic Idea of Large Deviation Bounds:

For any random variable X , by Markov inequality we have:
For any t > 0,

Pr(X ≥ a) = Pr(etX ≥ eta) ≤ E[etX ]

eta
.

Similarly, for any t < 0

Pr(X ≤ a) = Pr(etX ≥ eta) ≤ E[etX ]

eta
.



The General Scheme:

We obtain specific bounds for particular conditions/distributions by

1 computing E [etX ]

2 optimizing

Pr(X ≥ a) ≤ min
t>0

E[etX ]

eta

Pr(X ≤ a) ≤ min
t<0

E[etX ]

eta
.

3 symplifying



Moment Generating Function

Definition

The moment generating function of a random variable X is defined
for any real value t as

MX (t) = E[etX ].



Theorem

Let X be a random variable with moment generating function
MX (t). Assuming that exchanging the expectation and
differentiation operands is legitimate, then for all n ≥ 1

E[X n] = M
(n)
X (0),

where M
(n)
X (0) is the n-th derivative of MX (t) evaluated at t = 0.

Proof.

M
(n)
X (t) = E[X netX ].

Computed at t = 0 we get

M
(n)
X (0) = E[X n].



Theorem

Let X and Y be two random variables. If

MX (t) = MY (t)

for all t ∈ (−δ, δ) for some δ > 0, then X and Y have the same
distribution.

Theorem

If X and Y are independent random variables then

MX+Y (t) = MX (t)MY (t).

Proof.

MX+Y (t) = E[et(X+Y )] = E[etX ]E[etY ] = MX (t)MY (t).



Chernoff Bound for Sum of Bernoulli Trials

Let X1, . . . ,Xn be a sequence of independent Bernoulli trials with
Pr(Xi = 1) = pi . Let X =

∑n
i=1 Xi , and let

µ = E[X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi ] =
n∑

i=1

pi .

For each Xi :

MXi
(t) = E[etXi ]

= pie
t + (1− pi )

= 1 + pi (et − 1)

≤ epi (e
t−1).



MXi
(t) = E[etXi ] ≤ epi (e

t−1).

Taking the product of the n generating functions we get for
X =

∑n
i=1 Xi

MX (t) =
n∏

i=1

MXi
(t)

≤
n∏

i=1

epi (e
t−1)

= e
∑n

i=1 pi (e
t−1)

= e(e
t−1)µ



MX (t) = E[etX ] = e(e
t−1)µ

Applying Markov’s inequality we have for any t > 0

Pr(X ≥ (1 + δ)µ) = Pr(etX ≥ et(1+δ)µ)

≤ E[etX ]

et(1+δ)µ

≤ e(e
t−1)µ

et(1+δ)µ

For any δ > 0, we can set t = ln(1 + δ) > 0 to get:

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ
.



Theorem

Let X1, . . . ,Xn be independent Bernoulli random variables such
that Pr(Xi = 1) = pi .

• For any δ > 0,

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
. (1)

• For 0 < δ ≤ 1,

Pr(X ≥ (1 + δ)µ) ≤ e−µδ
2/3. (2)

• For R ≥ 6µ,
Pr(X ≥ R) ≤ 2−R . (3)



MX (t) = E[etX ] = e(e
t−1)µ

Applying Markov’s inequality we have for any t > 0

Pr(X ≥ (1 + δ)µ) = Pr(etX ≥ et(1+δ)µ)

≤ E[etX ]

et(1+δ)µ

≤ e(e
t−1)µ

et(1+δ)µ

For any δ > 0, we can set t = ln(1 + δ) > 0 to get:

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ
.

This proves (1).



We show that for 0 < δ < 1,

eδ

(1 + δ)(1+δ)
≤ e−δ

2/3

or that f (δ) = δ − (1 + δ) ln(1 + δ) + δ2/3 ≤ 0
in that interval. Computing the derivatives of f (δ) we get

f ′(δ) = 1− 1 + δ

1 + δ
− ln(1 + δ) +

2

3
δ = − ln(1 + δ) +

2

3
δ,

f ′′(δ) = − 1

1 + δ
+

2

3
.

f ′′(δ) < 0 for 0 ≤ δ < 1/2, and f ′′(δ) > 0 for δ > 1/2.
f ′(δ) first decreases and then increases over the interval [0, 1].
Since f ′(0) = 0 and f ′(1) < 0, f ′(δ) ≤ 0 in the interval [0, 1].
Since f (0) = 0, we have that f (δ) ≤ 0 in that interval.
This proves (2).



For R ≥ 6µ, δ ≥ 5.

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ
≤

(e

6

)R
≤ 2−R ,

that proves (3).



Theorem

Let X1, . . . ,Xn be independent Bernoulli random variables such
that Pr(Xi = 1) = pi . Let X =

∑n
i=1 Xi and µ = E[X ].

For 0 < δ < 1:

•

Pr(X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)(1−δ)

)µ
. (4)

•
Pr(X ≤ (1− δ)µ) ≤ e−µδ

2/2. (5)



Using Markov’s inequality, for any t < 0,

Pr(X ≤ (1− δ)µ) = Pr(etX ≥ e(1−δ)tµ)

≤ E[etX ]

et(1−δ)µ

≤ e(e
t−1)µ

et(1−δ)µ

For 0 < δ < 1, we set t = ln(1− δ) < 0 to get:

Pr(X ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)(1−δ)

)µ

This proves (4).
We need to show:

f (δ) = −δ − (1− δ) ln(1− δ) +
1

2
δ2 ≤ 0.



We need to show:

f (δ) = −δ − (1− δ) ln(1− δ) +
1

2
δ2 ≤ 0.

Differentiating f (δ) we get

f ′(δ) = ln(1− δ) + δ,

f ′′(δ) = − 1

1− δ
+ 1.

Since f ′′(δ) < 0 for δ ∈ (0, 1), f ′(δ) decreasing in that interval.
Since f ′(0) = 0, f ′(δ) ≤ 0 for δ ∈ (0, 1). Therefore f (δ) is non
increasing in that interval.
f (0) = 0. Since f (δ) is non increasing for δ ∈ [0, 1), f (δ) ≤ 0 in
that interval, and (5) follows.



Example: Coin flips

Let X be the number of heads in a sequence of n independent fair
coin flips.

Pr

(∣∣∣X − n

2

∣∣∣ ≥ 1

2

√
6n ln n

)

= Pr

(
X ≥ n

2

(
1 +

√
6 ln n

n

))

+Pr

(
X ≤ n

2

(
1−

√
6 ln n

n

))

≤ e−
1
3
n
2
6 ln n
n + e−

1
2
n
2
6 ln n
n ≤ 2

n
.



Markov Inequality gives

Pr

(
X ≥ 3n

4

)
≤ n/2

3n/4
≤ 2

3
.

Using the Chebyshev’s bound we have:

Pr
(∣∣∣X − n

2

∣∣∣ ≥ n

4

)
≤ 4

n
.

Using the Chernoff bound in this case, we obtain

Pr
(∣∣∣X − n

2

∣∣∣ ≥ n

4

)
= Pr

(
X ≥ n

2

(
1 +

1

2

))
+ Pr

(
X ≤ n

2

(
1− 1

2

))
≤ e−

1
3
n
2
1
4 + e−

1
2
n
2
1
4

≤ 2e−
n
24 .



Example: Estimating a Parameter

• Evaluating the probability that a particular DNA mutation
occurs in the population.

• Given a DNA sample, a lab test can determine if it carries the
mutation.

• The test is expensive and we would like to obtain a relatively
reliable estimate from a minimum number of samples.

• p = the unknown value;

• n = number of samples, p̃n had the mutation.

• Given sufficient number of samples we expect the value p to
be in the neighborhood of sampled value p̃, but we cannot
predict any single value with high confidence.



Confidence Interval

Instead of predicting a single value for the parameter we give an
interval that is likely to contain the parameter.

Definition

A 1− q confidence interval for a parameter T is an interval
[p̃ − δ, p̃ + δ] such that

Pr(T ∈ [p̃ − δ, p̃ + δ]) ≥ 1− q.

We want to minimize 2δ and q, with minimum n.
Using p̃n as our estimate for pn, we need to compute δ and q such
that

Pr(p ∈ [p̃ − δ, p̃ + δ]) = Pr(np ∈ [n(p̃ − δ), n(p̃ + δ)]) ≥ 1− q.



• The random variable here is the interval [p̃ − δ, p̃ + δ] (or the
value p̃), while p is a fixed (unknown) value.

• np̃ has a binomial distribution with parameters n and p, and
E[p̃] = p. If p /∈ [p̃ − δ, p̃ + δ] then we have one of the
following two events:

1 If p < p̃− δ, then np̃ ≥ n(p + δ) = np
(

1 + δ
p

)
, or np̃ is larger

than its expectation by a δ
p factor.

2 If p > p̃ + δ, then np̃ ≤ n(p − δ) = np
(

1− δ
p

)
, and np̃ is

smaller than its expectation by a δ
p factor.



Pr(p 6∈ [p̃ − δ, p̃ + δ])

= Pr

(
np̃ ≤ np

(
1− δ

p

))
+ Pr

(
np̃ ≥ np

(
1 +

δ

p

))
≤ e

− 1
2
np
(

δ
p

)2
+ e
− 1

3
np
(

δ
p

)2
= e−

nδ2

2p + e−
nδ2

3p .

But the value of p is unknown, A simple solution is to use the fact
that p ≤ 1 to prove

Pr(p 6∈ [p̃ − δ, p̃ + δ]) ≤ e−
nδ2

2 + e−
nδ2

3 .

Setting q = e−
nδ2

2 + e−
nδ2

3 , we obtain a tradeoff between δ, n, and
the error probability q.



q = e−
nδ2

2 + e−
nδ2

3

If we want to obtain a 1− q confidence interval [p̃ − δ, p̃ + δ],

n ≥ 3

δ2
ln

2

q

samples are enough.



Chernoff’s vs. Chebyshev’s Inequality

Assume for all i we have pi = p; 1− pi = q.

µ = E[X ] = np

Var [X ] = npq

If we use Chebyshev’s Inequality we get

Pr(|X − µ| > δµ) ≤ npq

δ2µ2
=

npq

δ2n2p2
=

q

δ2µ

Chernoff bound gives

Pr(|X − µ| > δµ) ≤ 2e−µδ
2/3.



Set Balancing

Given an n × n matrix A with entries in {0, 1}, let


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
... ... ... ...

an1 an2 ... ann




b1

b2

...

...
bn

 =


c1
c2
...
...
cn

.

Find a vector b̄ with entries in {−1, 1} that minimizes

||Ab̄||∞ = max
i=1,...,n

|ci |.



Theorem

For a random vector b̄, with entries chosen independently and with
equal probability from the set {−1, 1},

Pr(||Ab̄||∞ ≥
√

4n ln n) ≤ 2

n
.

The
∑n

i=1 aj ,ibi (excluding the zero terms) is a sum of independent
−1, 1 random variable. We need a bound on such sum.



Chernoff Bound for Sum of {−1,+1} Random
Variables

Theorem

Let X1, ...,Xn be independent random variables with

Pr(Xi = 1) = Pr(Xi = −1) =
1

2
.

Let X =
∑n

1 Xi . For any a > 0,

Pr(X ≥ a) ≤ e−
a2

2n .

de Moivre – Laplace approximation: For any k , such that
|k − np| ≤ a(

n

k

)
pk(1− p)n−k ≈ 1√

2πnp(1− p)
e
− a2

2np(1−p)



For any t > 0,

E[etXi ] =
1

2
et +

1

2
e−t .

et = 1 + t +
t2

2!
+ · · ·+ t i

i !
+ . . .

and

e−t = 1− t +
t2

2!
+ · · ·+ (−1)i

t i

i !
+ . . .

Thus,

E[etXi ] =
1

2
et +

1

2
e−t =

∑
i≥0

t2i

(2i)!

≤
∑
i≥0

( t
2

2 )i

i !
= et

2/2



E[etX ] =
n∏

i=1

E[etXi ] ≤ ent
2/2,

Pr(X ≥ a) = Pr(etX > eta) ≤ E[etX ]

eta
≤ et

2n/2−ta.

Setting t = a/n yields

Pr(X ≥ a) ≤ e−
a2

2n .



By symmetry we also have

Corollary

Let X1, ...,Xn be independent random variables with

Pr(Xi = 1) = Pr(Xi = −1) =
1

2
.

Let X =
∑n

i=1 Xi . Then for any a > 0,

Pr(|X | > a) ≤ 2e−
a2

2n .



Application: Set Balancing

Theorem

For a random vector b̄, with entries chosen independently and with
equal probability from the set {−1, 1},

Pr(||Ab̄||∞ ≥
√

4n ln n) ≤ 2

n
(6)

• Consider the i-th row āi = ai ,1, ...., ai ,n.

• Let k be the number of 1’s in that row.

• Zi =
∑k

j=1 ai ,ij bij .

• If k ≤
√

4n ln n then clearly Zi ≤
√

4n ln n.



If k >
√

4n log n, the k non-zero terms in the sum Zi are
independent random variables, each with probability 1/2 of being
either +1 or −1.
Using the Chernoff bound:

Pr
{
|Zi | >

√
4n log n

}
≤ 2e−4n log n/(2k) ≤ 2

n2
,

where we use the fact that n ≥ k.
The result follows by union bound (n rows).



Hoeffding’s Inequality

Large deviation bound for more general random variables:

Theorem (Hoeffding’s Inequality)

Let X1, . . . ,Xn be independent random variables such that for all
1 ≤ i ≤ n, E [Xi ] = µ and Pr(a ≤ Xi ≤ b) = 1. Then

Pr(|1
n

n∑
i=1

Xi − µ| ≥ ε) ≤ 2e−2nε
2/(b−a)2

Lemma

(Hoeffding’s Lemma) Let X be a random variable such that
Pr(X ∈ [a, b]) = 1 and E [X ] = 0. Then for every λ > 0,

E[EλX ] ≤ eλ
2(a−b)2/8.



Proof of the Lemma

Since f (x) = eλx is a convex function, for any α ∈ (0, 1) and
x ∈ [a, b],

f (X ) ≤ αf (a) + (1− α)f (b).

Thus, for α = b−x
b−a ∈ (0, 1),

eλx ≤ b − x

b − a
eλa +

x − a

b − a
eλb.

Taking expectation, and using E[X ] = 0, we have

E [eλX ] ≤ b

b − a
eλa +

a

b − a
eλb ≤ eλ

2(b−a)2/8.



Proof of the Bound

Let Zi = Xi − E[Xi ] and Z = 1
n

∑n
i=1 Xi .

Pr(Z ≥ ε) ≤ e−λεE[eλZ ] ≤ e−λε
n∏

i=1

E[eλXi/n] ≤ e−λε+
λ2(b−a)2

8n

Set λ = 4nε
(b−a)2 gives

Pr(|1
n

n∑
i=1

Xi − µ| ≥ ε) = Pr(Z ≥ ε) ≤ 2e−2nε
2/(b−a)2



A More General Version

Theorem

Let X1, . . . ,Xn be independent random variables with E[Xi ] = µi
and Pr(Bi ≤ Xi ≤ Bi + ci ) = 1, then

Pr(|
n∑

i=1

Xi −
n∑

i=1

µi | ≥ ε) ≤ e
− 2ε2∑n

i=1
c2
i


