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June 26, 2000 - Milestone for
Humanity

Announcing a “Milestone for Humanity--Decoding the
Book of Life” at the White House Ceremony for the
Completion of the Human Genome Project
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A Milestone for Humanity?
€he New Hork Eimes

June 12, 2010

“A Decade Later, Genetic Map Yields Few New Cures”

“Ten years after President Bill Clinton
announced that the first draft of the human
genome was complete, medicine has yet to
see any large part of the promised result.”

WHY?



Functional Driven Sequencing -
The Cancer Genome Atlas (TCGA)

Compare DNA of cancer and healthy tissue from the
same patient - somatic mutation

~ * Hundreds of cancer samples
4 * Dozens of cancer types

Statistical approach: Find statistically
significant recurrent mutations



Cancer Genomes - Cancer is a disease
of genome alterations

 Many mutations of various types
e Extensive diversity of mutations in tumors

— Two tumors rarely (never?) have precisely the same set
of somatic mutations
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DNA Replication and Mutation
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Challenges in Cancer Genomics

Human genome: ~3 billion letters Reads of 30-1000 letters

1. Measurement of all somatic mutations
2. ldentify functionally significant mutations



Types of Mutations

Driver mutations - functionally significant
mutations (cause of the cancer)

Passenger mutations — by product of the
cancer process (faulty repair mechanism)

Goal: identify the the driver mutations

Problem: There is no small set of mutations
that covers all patients



Cancer is a disease of “pathways”
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[Hanahan and Weinberg, Cell 2000]
What pathways are altered/mutated?



Mutations data

 The driver mutations are found in pathways -
sets of genes responsible for functions
associated with cancer.

* Passenger mutations are random mutations
that were not repaired because the repair
mechanism in cancer cell is broken



Finding Mutated Pathways

Standard practice: assess enrichment of mutations on
known pathways
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Finding Mutated Pathways

Manually constructed small network of interactions

[TCGA, Nature 2008]

Many genes not included!



Network Methods

Use large interaction network to |dent|fy
mutated subnewtorks

!

*= glteration

Networks are noisy!
Can we get reliable information?



Problem

Given:
1. Large-scale interaction network
2. Mutation data from multiple cancer -
samples e |
ﬂwﬁ:

*= glteration o
Find: Subnetworks mutated in a
significant number of samples




Problem Definition

Given:
1. Interaction network G = (V, E) i
V = genes. E =interactions b/w genes ga’@;;e; '
2. Binary alteration matrix - -
o il
Find: Subnetworks mutated in a ) : # P

significant number of samples
— subnetwork = connected subgraph

— subnetwork mutated in sample if > 1
gene mutated in sample



Computational Formulation

For subnetwork S:
N¢=number of samples in which S is mutated with
random alterations
m = number of observed samples in which S mutated

Samples

-

A B

Genes

Goal: Find S such that Pr[N.2m] <€
under suitable null distribution



Mutated subnetworks: Naive Method

Find: S such that Pr[N.>2m] <€
under suitable null distribution

Naive Method: Test each S

Problems
1. Multiple hypothesis testing: s
> 102 candidate subnetworks with < 6 genes <
2. Network topology : | \
TP53 has 238 neighbors in HPRD network
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(Local) Topology Matters

!
\/
Single path Path between mutated
between mutated genes is one of many

genes through node.



Our Contribution

1. Methods for de novo discovery of mutated
subnetworks

. Combinatorial model
II. Enhanced influence model

2. Definition of Influence Graph:
ldentify subnetworks using both frequency
of alteration and network topology

3. Statistical tests to assess the significance



Influence Graph

¥* alteration = unit source of heat

. . Influence measure
Heat diffusion

*Q *\@

Easily derived from Laplacian matrix of G



Influence Graph

¥* alteration = unit source of heat

Influence
° graph

| Encodes the
»*
! :> ) y :> O topology of G
. ~— © o o



Heat equation

ft) = (A(t), ..., fnlt) )T

heat on vertices at time t. @

df/dt = (A — D) f(t) A = [a;] = adjacency matrix of G.

df
i > aii(f(t) = fi(t))

J

f(t) = et t£(0) L = D — A = Laplacian matrix of G.

eltis heat kernel of G



Discovering Significant
Subnetworks

Two approaches:
1. Combinatorial Model
2. Enhanced Influence Model

Based on Influence Graph M

Statistical tests to assess significance



Combinatorial Model

Influence

N BN 1 -c==5"E

-

Fix K: find the subnetwork with K genes mutated in the
maximum number of samples

ﬁ> Connected maximum coverage problem

Samples

i

(“graph version” of maximum coverage problem — NP-Hard)



Connected maximum coverage problem

1. Thm. NP-Hard for general graphs.
2. Thm. NP-Hard for star graphs.
3. Thm.1-1/e approx. alg. for spider graphs

4. Thm. 1/(cr) approx. alg. for general graphs
— c=(2e-1)/(e-1)
— r=radius of the optimal solution in G



Combinatorial Model: Statistical Test

Fix K: find the subnetwork with K genes mutated
in the maximum number of samples

testing the number of altered samples

only 1 hypothesis no multiple correction!

Limitation: inadequate representation of
heterogeneity of cancer alterations



Enhance Influence Model (EIM)

Alteration Matrix Influence Graph
Samples W * = glterations
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EIM: Statistical test

X, = number of subnetworks with > s genes

®

using “random” alteration matrix. .

HOS : Xs 2 NS = 1,..,. N=# genes. 2 subnetworks with
2 or more genes

Two-stage multi-hypothesis test
1. Lets* =smallest s where H,® is rejected.

Pr{X.2n.]<a /N (Bonferroni correction)

# hypotheses = #s < # measured genes.



EIM: Statistical test

X, = number of subnetworks with > s genes
using “random” alteration matrix.

®

®

Hy:X.2n,s=1, .., N=#genes.

2 subnetworks with
2 or more genes

Two-stage multi-hypothesis test
2. Bound false discovery rate (FDR) for list of

identified subnetworks.

Thm. Fix B, ..., By such that 2, 3, < B. Let s* be smallest s
such that n, 2 E[X] / B.. If return all subnetworks of size 2
s* as significant, then FDR < f.



Two Stage Statistical Test

 Instead of testing the significance of the
support of individual itemsets we test the
significance of the number of itemsets with a
given support

« The null hypothesis distribution is specified by
the Poisson approximation result

e Reduces the number of simultaneous tests
« More powerful test — less false negatives

[JACM 2012 - Kirsch, Mitzenmacher, Pietracaprina, Pucci, U, Vandin]



Test I

» Define oy o, o3 ... such that 2= o
 For 1=0,...,109 (S;,ax — Smin ) +1
—§;= S i, +2
— Q(k, s;) = observed number of itemsets of
size k and support = s;
— Hy(k,s;) = “Q(k,s;) conforms with
Poisson(A\;)”

— Reject Hy(k,s;) if p-value < o;




Test I

« Let s* be the smallest s such that
H, (k,s) rejected by Test I

« With confidence level « the number of
itemsets with support 2 s* is significant

« Some itemsets with support 2 s* could still
be false positive



Test 11

Define B4, B, Bs.»Suchthat3 B:=< 8
Reject Hy (k,s;) if:
p-value < o and Q(k,s;)= A;/ B;

Let s* be the minimum s such that Hy(k,s)
was rejected

If we flag all itemsets with support = s* as
significant, FDR = /3



Proof

« V. = false discoveries if Hy(k,s;) first rejected
« E; = "Hy(k,s;) rejected”
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Interaction network
HPRD: 18796 nodes, 37107 edges

Datasets G
1. Glioblastoma Multiforme (GBM) [TCGA, Nature, 2008]

601 sequenced genes in 91 samples

Array copy number data on all genes

2. Lung Adenocarcinoma [Ding et al., Nature, 2008]
623 sequenced genes in 188 samples



GBM tcGa, Nature 2008]
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GBM: Mutations + Copy number

Enrichment p-val

s #net2s p-val RTK/RAS/PI(3)K P53 RB1

20 2 <102 0.69 2x10° 4x108

26 1 5x10-2 108 - -

RTK/RAS/PI(3)K

FDR <0.1
total
enrichment
fors=20: P53
p <102




Lung Adenocarcinoma
[Ding et al., Nature 2008]
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Results: Lung Adenocarcinoma

S #net2s p-val
6 3 <102
8 2 <102
48 1 <102

enrichment

KEGG pathway/p-val

Notch signaling/2x10-°

MAPK signaling/3x10-2
p53 signaling/7x104

FDR <0.07

total
enrichment
forsz6:

p < 7x107°

signal-sending cell

signal-receiving cell

Notch signaling



Lung Adenocarcinoma: Notch

Implicated in a variety of cancers
including lung

[Axelson, Sem. Cancer Biol. 2004, Collins et
al., Sem. Cancer Biol. 2004]

m Not reported in Ding et al. [Nature

JAG2 2008]

NOTCH2
NOTCH3
NOTCH4
MAML1
MAML2

R W W NN =W



Simulated data

e Graph: KEGG pathway + random

P interactions
@ e 258 genes
e 1762 “real” edges
@ e 440 random edges
e Alteration Matrix
e 30 tested genes including P
(BRKCE e Random mutations (parameters

from real data)
e Mutations in P (17% of samples)

S #c.c.2s FDR p-val

4 1 <1072 <102

eremoving mutations in P: nothing significant
emaking BRAF hub: nothing significant



Dendrix Removing the Network

Patients

-

-

Interactiong =

Genes

network
% il

-

4

HotNet

Mutation
matrix

Too many groups

D/ W of genes to test
exhaustively.

Networks are noisy.
Do we need them?



Mutation Matrix
Genomes genes

ﬂ:###ik

e I
gene

e L k]
ﬂ@ikiﬂ

patients

*: somatic
mutation

Naive: Test groups of genes
Too many hypotheses
Network reduced hypotheses. Other information?



Pathways and Mutational
Signatures

Driver mutations are rare.

—>Cancer pathway has exactly one driver
mutation (gene) per patient [REFs]

[Exclusivity]
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Properties of driver mutations

M = pathway (set of genes)
* n=number of tested genes

* From current understanding of mutational
process of cancer:

— Coverage: Most samples have at least one mutation in
M

— Exclusivity: Most samples have no more than one
mutation in M



Mutual Exclusivity and Coverage

genes

Coverage:

lg) = {patients in which =
gene g mutated}

patients

fYﬂﬂ)==lJingw’=
{patients in which > 1 of
{91,95..-,9,4 is mutated}

Mutation Matrix

Exclusive (Column) Submatrix



Mutual exclusivity and coverage

Coverage:
lg) = {patients in which gene g mutated}

(M) = U; I(g,) = {patients in which > 1 of {g,,9,,...,9,/
is mutated}

Maximum Coverage Exclusive Submatrix
Problem: Given k>0, find the exclusive set M
of k genes that maximizes [[(M)]

Theorem Maximum Covering Exclusive
Submatrix Problem is NP-Hard.



Relaxing Constraints

genes

For set M of genes:

Coverage overlap:
V(M) =2,[T{g)] - [[(M)]

patients

v(M) =0 if and only if M is
exclusive.

Goal: |I(M)/ large and
v(M) small.

“Approximately exclusive”,
high coverage submatrix



Approximate Exclusivity
Goal: (M) large and y(M) small.

Weight: W(M) = [T(M)] -y(M) =2 [[(M)] - Z,|T(g)]

Maximum Weight Submatrix Problem: Given k>0,
find the set M of k genes that maximizes W(M)

Thm. Maximum Weight Submatrix Problem is NP-
Hard.



Markov Chain Monte Carlo

Sample gene sets |M| = k according to W(M)

Markov chain:
States = sets v .
M [ wm, ) [ ™, |

Generate sequence of states: M) M2, MB) .

Markov Chain Convergence Thm: M) 2 nt



Metropolis-Hastings

Define transition probabilities of Markov Chain so
nt = desired distribution.

Markov chain:
States = sets v .
M [ wm, ) [ ™, |

Distribution on gene sets: Pr[M] ~ e W(M)

In general: no guarantees on rate of convergence



MCMC approach

Thm. Markov Chain is rapidly mixing.

Returns a distribution on sets, not just optimal
[max W(M)] set

No assumptions on distribution of mutations
— i.e. independence not necessary
— can handle various mutation types

*Vandin, Upfal, Raphael. (submitted)



Experimental Results

e Simulated data

 Cancer data
1. Brain cancer (GBM) [TCGA, Nature (2008)]

601 sequenced genes in 84 samples
Array copy number data on all genes

2. Lung Adenocarcinoma [Ding et al., Nature (2008)]
623 sequenced genes in 188 samples



Brain Cancer (GBM)

e M ={CDKN2B, RB1, CDK4}
— not the set with highest weight %

deletion in 47%
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Lung Adenocarcinoma

cell membrane
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