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•    Fundamental concept in Graph Theory.	


•    Numerous practical applications, e.g. :	

→  Reliable and secure communication	

→  Routing	

→  Navigation	

→  …	


u 

v 

Graph Connectivity	




2-Edge Connectivity	

	
Let G = (V,E) be an undirected connected graph, with m edges and n 
vertices. 	


	
An edge e ∈ E is a bridge if its removal increases the number of 
connected components of G. 	


	
Graph G is 2-edge-connected if it has no bridges.	


	
The 2-edge-connected components of G are its maximal 2-edge-
connected subgraphs.	
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(Point2Point) 2-Edge Connectivity	

	
Vertices u and v are 2-edge-connected if if there are two edge-disjoint 
paths between u and v	


	
By Menger’s Theorem, vertices u and v are 2-edge-connected if and 
only removal of any edge leaves them in same connected component.	


	
Can define a 2-edge-connected block of G as a maximal subset B ⊆ V 
s. t. u and v are 2-edge-connected for all u, v ∈ B.	
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2-Vertex Connectivity	

	
Let G = (V,E) be an undirected connected graph, with m edges and n 
vertices. 	


	
A vertex v ∈ V is an articulation point if its removal increases the 
number of connected components of G. 	


	
Graph G is 2-vertex-connected if it has at least 3 vertices (don’t allow 
for degenerate components) and no articulation points.	


	
The 2-vertex-connected components of G are its maximal 2-vertex-
connected subgraphs.	
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(P2P) 2-Vertex Connectivity	

	
Vertices u and v are 2-vertex-connected if there are two 
(internally) vertex-disjoint paths between u and v.	


	
By Menger’s Theorem, if vertices u and v are 2-vertex-connected, 
then removal of any vertex (≠ u, v) leaves them in same connected 
component.	


	


	


	


	


	


	
Can define a 2-vertex-connected block of G as a maximal subset 
B ⊆ V s. t. u and v are 2-vertex-connected for all u, v ∈ B.	
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Bounds for Undirected G	

Q1: Find whether G is 2-vertex-connected 

(2-edge-connected).                           
I.e., find one connectivity cut (if any)	


	


Q2: Find all connectivity cuts 
(articulation points, bridges) in G	


	


Q3: Find the 2-connectivity (2-vertex-,   
2-edge- connected) blocks of G	


	


Q4: Find the 2-connectivity (2-vertex-,   
2-edge-connected) components of G	


O(m+n)	

	

	


O(m+n)	

	


	

O(m+n)	

	

O(m+n)	

	


[R.E.Tarjan, SIAM Journal on Computing 1972]	




Directed Graphs	

	
Let G = (V,E) be a directed graph, with m edges and n vertices. 	


	
G is strongly connected if there is a directed path from each vertex to 
every other vertex in G.	


	
The strongly connected components (SCCs) of G are its maximal 
strongly connected subgraphs.	
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Undirected: 2-Edge Connectivity	

	
Let G = (V,E) be a connected graph, with m edges and n 
vertices. 	

	
An edge (u,v) ∈ E is a bridge if its removal increases the 
number of connected components of G 	

	
Graph G is 2-edge-connected if it has no bridges.	

	
The 2-edge-connected components of G are its maximal 
2-edge-connected subgraphs	




Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed strongly connected graph, 
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a strong bridge if its removal 
increases the number of strongly connected components 
of G 	

	
	




Directed: 2-Edge Connectivity	


	
Let G = (V,E) be a directed 
strongly connected graph, 
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a 
strong bridge if its removal 
increases the number of 
strongly connected 
components of G 	
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Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed strongly connected graph, 
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a strong bridge if its removal 
increases the number of strongly connected components 
of G 	

	
Graph G is 2-edge-connected if it has no strong bridges.	

	
The 2-edge-connected components of G are its maximal 
2-edge-connected subgraphs	
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Vertices u and v are 2-edge-connected if there are two edge-disjoint paths 
from u to v and two edge-disjoint paths from v to u.	

	


By Menger’s Theorem, vertices u and v are 2-edge-connected if and only 
if the removal of any edge leaves them in same strongly connected 
component.	

	


	


	


	


	


	


Can define a 2-edge-connected block of G as a maximal subset B ⊆ V s. t. 
u and v are 2-edge-connected for all u, v ∈ B.	


u v 

P2P 2-Edge Connectivity	
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2-Edge-Connected Comp’s ≠ Blocks	
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2-Edge-Connected Comp’s ≠ Blocks	




2-Edge-Connected Blocks	

How easy is it to compute 2-edge-connected blocks?	

Can we just remove strong bridges? 	




Undirected: 2-Vertex Connectivity	

	
Let G = (V,E) be an undirected connected graph, with m edges and n 
vertices. 	


	
A vertex v ∈ V is an articulation point if its removal increases the 
number of connected components of G. 	


	
Graph G is 2-vertex-connected if it has at least 3 vertices (don’t allow 
for degenerate components) and no articulation points.	


	
The 2-vertex-connected components of G are its maximal 2-vertex-
connected subgraphs.	


	
	




Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a directed strongly connected graph, with m edges and 
n vertices. 	


	
A vertex v ∈ V is a strong articulation point if its removal, increases the 
number of strongly connected components of G. 	


	
 	
	




Directed: 2-Vertex Connectivity	


	
Let G = (V,E) be a 
directed strongly 
connected graph, with 
m edges and n 
vertices. 	


	

	
A vertex v ∈ V is a 
strong articulation 
point if its removal, 
increases the number 
of strongly connected 
components of G. 	
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Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a directed strongly connected graph, with m edges and 
n vertices. 	


	
A vertex v ∈ V is a strong articulation point if its removal, increases the 
number of strongly connected components of G. 	


	
Graph G is 2-vertex-connected if it has at least 3 vertices (don’t allow 
for degenerate components) and no strong articulation points.	


	
The 2-vertex-connected components of G are its maximal 2-vertex-
connected subgraphs.	
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Vertices u and v are 2-vertex-connected if there are two (internally) vertex-
disjoint paths from u to v and two (internally) vertex-disjoint paths from 
v to u.	

	


By Menger’s Theorem, if vertices u and v are 2-vertex-connected then the 
removal of any vertex (≠ u, v) leaves them in same strongly connected 
component.	

	

	

	

	

	


Can define a 2-vertex-connected block of G as a maximal subset B ⊆ V    
s. t. u and v are 2-vertex-connected for all u, v ∈ B.	


P2P 2-Vertex Connectivity	


u v 
u v 
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Big Picture (Undirected)	
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Big Picture (Directed)	
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Bounds for Directed G	

Q1: Find whether G is 2-vertex-

connected (2-edge-connected).                           
I.e., find one connectivity cut (if any)	


	


Q2: Find all 2-connectivity cuts 
(articulation points, bridges) in G	


	


Q3: Find the 2-connectivity (2-vertex-,   
2-edge- connected) blocks of G	


	


Q4: Find the 2-connectivity (2-vertex-,   
2-edge-connected) components of G	


   O(m+n)	

     [Tarjan 76] + [Gabow & 

Tarjan 83]	


     [Georgiadis 10]	

	


   O(m+n)	

     [Italiano et al 10]	

	


   O(m+n)	

     [Georgiadis et al 15]	

	


   O(mn)	

	
[Jaberi 14]	


Can we do better?	

	


Can  
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Why should we care?	


	
Theoretically interesting problem	

	
It also has several intriguing applications	




Bounds for Directed G	

Q1: Find whether G is 2-vertex-connected 

(2-edge-connected).                           
I.e., find one connectivity cut (if any)	


	


Q2: Find all 2-connectivity cuts 
(articulation points, bridges) in G	


	


Q3: Find the 2-connectivity (2-vertex-,   
2-edge- connected) blocks of G	


	


Q4: Find the 2-connectivity (2-vertex-,   
2-edge-connected) components of G	


   O(m+n)	

     [Tarjan 76] + [Gabow & 

Tarjan 83]	


     [Georgiadis 10]	

	


   O(m+n)	

     [Italiano et al 10]	

	


   O(m+n)	

     [Georgiadis et al 15]	

	


   O(mn)	

	
[Jaberi 14]	
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1.  2-Connectivity on directed graphs	

2.  Algorithms for strong articulation 

points and strong bridges	

3.  Experiments	

4.  Open Problems	




Naive Algorithms	


Check whether vertex v is strong articulation point in G : 	

	
Compute strongly connected components of G/{v}	


	


O(n(m+n)) for computing all strong articulation points	

	


Check whether edge e is strong bridge in G : 	

 	
Compute strongly connected components of G/{e}	

	


O(m(m+n)) for computing all strong bridges	

Not difficult to get O(n(m+n)) algorithm 	




Flow graphs and Dominators	

	
A flow graph G(s) = (V,E,s) is a 
directed graph with a start vertex s in 
V such that every vertex in V 
reachable from s 	
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Flow graphs and Dominators	

	
A flow graph G(s) = (V,E,s) is a 
directed graph with a start vertex s in 
V such that every vertex in V 
reachable from s 	
	

	
Given a flow graph G(s)=(V,E,s), can 
define a dominance relation: vertex v 
dominates vertex w if every path 
from s to w includes v	

	
	




Flow graphs and Dominators	

	
A flow graph G(s) = (V,E,s) is a 
directed graph with a start vertex s in 
V such that every vertex in V 
reachable from s 	
	

	
Given a flow graph G(s)=(V,E,s), can 
define a dominance relation: vertex v 
dominates vertex w if every path 
from s to w includes v	

	
Let dom(w) be set of vertices that 
dominate w. For any w ≠ s we have 
that  {s,w} ⊆  dom(w): s and w are the 
trivial dominators of w	




Dominator Trees	

	
Dominance relation is transitive and its 
transitive reduction is referred to as the 
dominator tree DT(s).	

	
DT(s) rooted at s.	

	
v dominates w if and only if v is 
ancestor of w in dominator tree DT(s). 	

	
If v dominates w, and every other non-
trivial dominator of v also dominates w, 
v is an immediate dominator of w.	

	
If v has any non-trivial dominators, 
then v has a unique immediate 
dominator: the immediate dominator of 
v is the parent of v in the dominator 
tree DT(s).	
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1 
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Dominator Trees	

1 

3 2 

6 

7 5 4 

1 

3 2 

6 7 5 4 

Dominators (and dominator tree) 
can be computed in O(m+n) time:	


[Buchsbaum, Kaplan, Rogers & Westbrook ‘04]	


[Georgiadis & Tarjan ‘04]	


[Alstrup, Harel, Lauridsen &Thorup ‘97]	




	
Lemma 1 Let G = (V,E) be a strongly connected 
graph, and let s be any vertex in G. Let G(s) = 
(V,E,s) be the flow graph with start vertex s. If v is a 
non-trivial dominator of a vertex w in G(s), then v is 
a strong articulation point in G.	


 	


Vertex Dominators and SAP	




	
Lemma 1 Let G = (V,E) be a strongly connected 
graph, and let s be any vertex in G. Let G(s) = 
(V,E,s) be the flow graph with start vertex s. If v is a 
non-trivial dominator of a vertex w in G(s), then v is 
a strong articulation point in G.	


 	
 1 2 

3 4 5 

6 7 

Vertex 3 is strong 
articulation point in G 

Vertex 3 is a non-trivial  
dominator in G(2) 

2 

3 

1 4 5 6 7 

Vertex Dominators and SAP	




	
Lemma 2 Let G = (V,E) be a strongly connected 
graph. If v is a strong articulation point in G, then 
there must be a vertex s ∈ V such that v is a non-
trivial dominator of a vertex w in the flow graph    
G(s) = (V,E,s).	


 	

1 2 

3 4 5 

6 7 

Vertex 5 must be non-trivial 
dominator in some G(s). Here s=6. 

Vertex 5 is strong  
articulation point in G 

5 

6 

7 

1 2 3 4 

Vertex Dominators and SAP	




Still Not Efficient	

	
Corollary Let G = (V,E) be a strongly connected 
graph. Vertex u is a strong articulation point in G 
if and only there is a vertex s∈V such that u is a 
non-trivial dominator of a vertex v in the flow 
graph G(s) = (V,E,s).	


 	

	
Must compute dominator trees for all flow graphs 
G(v), for each vertex v in V, and output all non-
trivial dominators found.	




Dominator Trees	
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Still Not Efficient	

	
Corollary Let G = (V,E) be a strongly connected 
graph. Vertex u is a strong articulation point in G 
if and only then there is a vertex s∈V such that u 
is a non-trivial dominator of a vertex v in the flow 
graph G(s) = (V,E,s).	


 	
 	
Must compute dominator trees for all flow graphs 
G(v), for each vertex v in V, and output all non-
trivial dominators found.	


 Like trivial algorithm 	


	
	


 Takes O(n(m+n)) time 	


 Only more complicated... 	


	
	




Reversal Graph	


	
Observation. Let G = (V,E) be a strongly connected 
graph and GR = (V,ER) be its reversal graph. Then GR 
is strongly connected. Furthermore, vertex v is a 
strong articulation point in G if and only if v is a 
strong articulation point in GR.	


 	


	
Reversal Graph GR = (V,ER) : reverse all edges in G. 
If (u,v) in G then (v,u) in GR.	




Exploit Dominators	


	
Theorem. Let G = (V,E) be a strongly connected graph, and 
let s ∈ V be any vertex in G. Then vertex v ≠ s is a strong 
articulation point in G if and only if v ∈ D(s) ∪ DR(s).	


 	


Given a strongly connected graph G=(V,E), let 	

•  G(s) = (V,E,s) be the flow graph with start vertex s 	

•  D(s) the set of non-trivial dominators in G(s)	

•  GR(s) = (V,ER,s) be the flow graph with start vertex s 	

•  DR(s) the set of non-trivial dominators in GR(s)	




Strong Articulation Points	


Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V 
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G 
if and only if v ∈ D(s) ∪ DR(s).	


Proof:	


If v ∈ D(s) ∪ DR(s) we know from previous lemmas that v must be an 
articulation point. 	


So, we need to prove only one direction.	




Strong Articulation Points	
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Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V 
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G 
if and only if v ∈ D(s) ∪ DR(s).	


Proof: Let v be a strong articulation point	


' 

G\{v}
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Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V 
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G 
if and only if v ∈ D(s) ∪ DR(s).	


Proof: Let v be a strong articulation point	

G


G\{v}
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Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V 
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G 
if and only if v ∈ D(s) ∪ DR(s).	


Proof: Let v be a strong articulation point	

G


G\{v}
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Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V 
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G 
if and only if v ∈ D(s) ∪ DR(s).	


Proof: Let v be a strong articulation point	


 v  ∈  D(s)    

G


G\{v}
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Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V 
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G 
if and only if v ∈ D(s) ∪ DR(s).	


Proof: Let v be a strong articulation point	


	


 v  ∈  DR(s)    

G


G\{v}


Strong Articulation Points	




Linear-Time Algorithm	

Input:  A strongly connected graph G = (V , E ), with n vertices and m 
edges. 	


Output:   The strong articulation points of G.	


1.  Choose arbitrarily a vertex s ∈ V in G, and test whether s is a 
strong articulation point in G. If s is a strong articulation point, 
then output s.	


2.  Compute and output D(s), the set of non-trivial dominators in the 
flow graph G(s) = (V,E,s).	


3.  Compute the reversal graph GR = (V,ER).	


4.  Compute and output DR(s), the set of non-trivial dominators in the 
flow graph GR(s) = (V,ER,s).	


	
Total time is O(m+n)	




Strong Bridges	
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Lemma. If there is an algorithm to compute the strong 
articulation points of a strongly connected graph in 
time T(m,n), then there is algorithm to compute the 
strong bridges of a strongly connected graph in time    
O(m + n + T(2m, n + m)).	

 	

“Proof” :	


1. Reduction:	


Mainly of theoretical interest (# vertices blows up)	


Strong Bridges	


Φu,v 



Strong Bridges	


	
Edge (u,v) dominates vertex w if every path from s to v 
contains edge (u,v)	

	
If edge (u,v) dominates vertex w, and every other edge 
dominator of u dominates w, we say that (u,v) is an 
immediate edge dominator of vertex w.	

	
If a vertex has an edge dominator, then it has a unique 
immediate edge dominator.	

	
With some care, able to extend all the theory from (vertex) 
dominators to edge dominators.	

	
Given a flow graph G(s) = (V,E,s), edge dominators can be 
computed in time O(m+n). But you need to re-implement 
code for  dominators.	


2. Edge Dominators	




Edge Dominators in Practice	

	
Lemma. [Tarjan 1974]  Let G = (V,E,s) be a flow graph and let 
T be a DFS tree of G with start vertex s. Edge (v,w) is an edge 
dominator in flow graph G if and only if all of the following 
conditions are met:                                                                       
- (v,w) is a tree edge,                                                                    
- w has no entering forward edge or cross edge, and                   
- there is no back edge (x,w) such that w does not dominate x.	

	
Need to (1) compute dominator tree DT(s) and (2) check 
whether w ancestor of x in DT(s) for back edge (x,w). 	

	
Given a flow graph G(s) = (V,E,s), edge dominators can be 
computed in time O(m+n). Reuse code for (vertex) dominators. 
More efficient in practice. But still slightly slower than (vertex) 
dominators.	




Computing All Strong Bridges	


	
Theorem. Let G = (V,E) be a strongly connected graph, and 
let s ∈ V be any vertex in G. Then edge (u,v) is a strong 
bridge in G if and only if (u,v) ∈ ED(s) ∪ EDR(s).	


 	


Given a strongly connected graph G=(V,E), let 	

•  G(s) = (V,E,s) be the flow graph with start vertex s 	

•  ED(s) the set of edge dominators in G(s)	

•  GR(s) = (V,ER,s) be the flow graph with start vertex s 	

•  EDR(s) the set of edge dominators in GR(s)	


	
Incidentally, this proves also that can be at most 2n-2 strong 
bridges in a directed graph.	




1.  2-Connectivity on directed graphs	

2.  Algorithms for strong articulation points 

and strong bridges	

3.  Experiments (very rough, still ongoing)	

4.  Open Problems	


Today’s Outline	




2-Connectivity	


	
Can 2-connectivity be useful to understand the 
(macroscopic) structure of social networks / web 
graphs / other networks?	


   Do social networks / web graphs / other networks 
have different 2-connectivity properties?	


   Nodes / links which act more as “information” 
gateways (tweets / diseases / etc…) in the network?	

	
	
	




2-Vertex Cores	

	
Delete recursively all the strong articulation points of a 
directed graph G, as follows	

	
While there are strong articulation points in G do:	

1.  Let G’ be the graph defined by all the s.c.c.’s of G;	

2.  Set G to be the graph obtained by deleting all the strong 

articulation points in G’ together with their incident edges.	


	
Let Gf be the final graph obtained at the end of this process.	

	
We call the s.c.c.’s of Gf the 2-vertex connectivity cores of 
the original graph G	

	
2-vertex connectivity cores are subsets of 2-vertex-
connected components	


	

	




2-Vertex-Connected Components and 
2-Vertex Cores	




2-Edge Cores	

	
Delete recursively all the strong bridges of directed graph 
G, as follows	

	
While there are strong bridges in G:	

1.  Let G’ be the graph defined by all the s.c.c.’s of G;	

2.  Set G to be the graph obtained by deleting all the strong bridges 

in G’.	


	
Let Gf be the final graph obtained at the end of this process.	

	
The s.c.c.’s of Gf are the 2-edge connectivity cores of the 
original graph G	

	
2-edge connectivity cores are exactly 2-edge-connected 
components	

	
	

	




2-Edge-Connected Components 
= 2-Edge Cores	




A Hierarchy of 2-Components	

	
2-vertex core subset of 2-vertex-
connected component (modulo 
degenerate components)	

	
	


2-vertex 
core 	


2-vertex-conn. 
comp. 	


test	




A Hierarchy of 2-Components	

	
2-vertex core subset of 2-vertex-
connected component (modulo 
degenerate components)	

	
2-vertex-connected component 
subset of 2-edge-connected 
component	

	
	


2-vertex 
core 	


2-edge-conn. 
comp. 	


2-vertex-conn. 
comp. 	


test	




A Hierarchy of 2-Components	

	
2-vertex core subset of 2-vertex-
connected component (modulo 
degenerate components)	

	
2-vertex-connected component 
subset of 2-edge-connected 
component	

	
2-edge-connected component 
subset of strongly connected 
component	

	
Roughly speaking:	

	
2VC ⊆ 2VCC ⊆ 2ECC ⊆ SCC	


    (Will integrate blocks in our 
experiments soon)	


2-vertex 
core 	


2-edge-conn. 
comp. 	


giant s.c.c.	


2-vertex-conn. 
comp. 	


test	




Data Set	
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Size of the giant 2-vertex- and 2-edge-connected component (l2VCC and l2ECC) 
and in the largest 2-vertex-connected core (l2C). 

(Expressed as % of vertices in the lSCC) 

Social: Bigger 2-Components…	
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Size of the giant 2-vertex- and 2-edge-connected component (l2VCC and l2ECC) 
and in the largest 2-vertex-connected core (l2C). 

(Expressed as % of vertices in the lSCC) 

…some have small cores…	
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Number of vertices and edges in the final graph Gf obtained after removing 
recursively all strong articulation points. 

(Expressed as % of n and m) 

…but are buried deep inside	




Biconnectivity: Web Graphs	


uk-2002@1M (n = 1M, m = 41.2M) 



Biconnectivity: Social Networks	


twitter-2010 (n = 41.6M, m = 1,468.3M) 



twitter-higgs-follow (n = 456K, m = 14.8M) 

Biconnectivity: Social (sub)networks	




Biconnectivity: Co-Purchase	


amazon-2008 (n = 735K, m = 5.1M) 
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30% LP on Web Graphs	


uk-2002@1M (n = 1M, m = 41.2M) 



30% LP on Web Graphs	


uk-2002@1M (n = 1M, m = 41.2M) 



30% LP on Social Networks	


twitter-higgs-follow (n = 456K, m = 14.8M) 



30% LP on Social Networks	


twitter-higgs-follow (n = 456K, m = 14.8M) 



1.  2-Connectivity on directed graphs	

2.  Algorithms for strong articulation points 

and strong bridges	

3.  Experiments	

4.  Open Problems	


Today’s Outline	




Open Problems	

 	


Can the 2-vertex and 2-edge-connected components of a 
directed graph be computed in linear time?	

	


	
Best known time is O(n(m+n)) by repeatedly	

	
deleting strong articulation points / strong bridges.	


	


	
Can a dynamic algorithm help you?	

	

Higher connectivity cuts in strongly connected graphs in 
linear time?  (e.g., separation pairs: vertex and edge cuts of 
cardinality 2)	

	

	

	

	

	




Open Problems / Future Work	


Would like to understand more the structure and 
the properties of 2-connectivity components / 
blocks (especially in real-world graphs)	
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