
Dynamic Graph ���
Algorithms	

Giuseppe F. Italiano 	

University of Rome “Tor Vergata”	

giuseppe.italiano@uniroma2.it	

http://www.disp.uniroma2.it/users/italiano	

Outline	

Dynamic Graph Problems – Quick Intro	

Lecture 1. (Undirected Graphs) 	

	
Dynamic Connectivity	

Lecture 2. (Undirected/Directed Graphs) 	

	
Dynamic Shortest Paths	

Lecture 3. (Non-dynamic?) 	

	
2-Connectivity in Directed Graphs	

Outline	

Dynamic Graph Problems – Quick Intro	

Lecture 1. (Undirected Graphs) 	

	
Dynamic Connectivity	

Lecture 2. (Undirected/Directed Graphs) 	

	
Dynamic Shortest Paths	

Lecture 3. (Non-dynamic?) 	

	
2-Connectivity in Directed Graphs	

Today’s Outline	

1.  2-Connectivity on directed graphs	

2.  Algorithms for strong articulation points

and strong bridges	

3.  Experiments	

4.  Open Problems	

Today’s Outline	

1.  2-Connectivity on directed graphs	

2.  Algorithms for strong articulation points

and strong bridges	

3.  Experiments	

4.  Open Problems	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

•  Fundamental concept in Graph Theory.	

•  Numerous practical applications, e.g. :	

→  Reliable and secure communication	

→  Routing	

→  Navigation	

→  …	

u

v

Graph Connectivity	

2-Edge Connectivity	

	
Let G = (V,E) be an undirected connected graph, with m edges and n
vertices. 	

	
An edge e ∈ E is a bridge if its removal increases the number of
connected components of G. 	

	
Graph G is 2-edge-connected if it has no bridges.	

	
The 2-edge-connected components of G are its maximal 2-edge-
connected subgraphs.	

	
	

2-Edge Connectivity	

	
Let G = (V,E) be an undirected connected graph, with m edges and n
vertices. 	

	
An edge e ∈ E is a bridge if its removal increases the number of
connected components of G. 	

	
Graph G is 2-edge-connected if it has no bridges.	

	
The 2-edge-connected components of G are its maximal 2-edge-
connected subgraphs.	

	
	

(Point2Point) 2-Edge Connectivity	

	
Vertices u and v are 2-edge-connected if if there are two edge-disjoint
paths between u and v	

	
By Menger’s Theorem, vertices u and v are 2-edge-connected if and
only removal of any edge leaves them in same connected component.	

	
Can define a 2-edge-connected block of G as a maximal subset B ⊆ V
s. t. u and v are 2-edge-connected for all u, v ∈ B.	

u v

(Point2Point) 2-Edge Connectivity	

	
Vertices u and v are 2-edge-connected if there are two edge-disjoint
paths between u and v	

	
By Menger’s Theorem, vertices u and v are 2-edge-connected if and
only removal of any edge leaves them in same connected component.	

	
Can define a 2-edge-connected block of G as a maximal subset B ⊆ V
s. t. u and v are 2-edge-connected for all u, v ∈ B.	

Blocks = Components	

2-Vertex Connectivity	

	
Let G = (V,E) be an undirected connected graph, with m edges and n
vertices. 	

	
A vertex v ∈ V is an articulation point if its removal increases the
number of connected components of G. 	

	
Graph G is 2-vertex-connected if it has at least 3 vertices (don’t allow
for degenerate components) and no articulation points.	

	
The 2-vertex-connected components of G are its maximal 2-vertex-
connected subgraphs.	

	
	

2-Vertex Connectivity	

	
Let G = (V,E) be an undirected connected graph, with m edges and n
vertices. 	

	
A vertex v ∈ V is an articulation point if its removal increases the
number of connected components of G. 	

	
Graph G is 2-vertex-connected if it has at least 3 vertices (don’t allow
for degenerate components) and no articulation points.	

	
The 2-vertex-connected components of G are its maximal 2-vertex-
connected subgraphs.	

	
	

2-Vertex Connectivity	

	
Let G = (V,E) be an undirected connected graph, with m edges and n
vertices. 	

	
A vertex v ∈ V is an articulation point if its removal increases the
number of connected components of G. 	

	
Graph G is 2-vertex-connected if it has at least 3 vertices (don’t allow
for degenerate components) and no articulation points.	

	
The 2-vertex-connected components of G are its maximal 2-vertex-
connected subgraphs.	

	
	

(P2P) 2-Vertex Connectivity	

	
Vertices u and v are 2-vertex-connected if there are two
(internally) vertex-disjoint paths between u and v.	

	
By Menger’s Theorem, if vertices u and v are 2-vertex-connected,
then removal of any vertex (≠ u, v) leaves them in same connected
component.	

	

	

	

	

	

	
Can define a 2-vertex-connected block of G as a maximal subset
B ⊆ V s. t. u and v are 2-vertex-connected for all u, v ∈ B.	

u
v

v u

(P2P) 2-Vertex Connectivity	

	
Vertices u and v are 2-vertex-connected if there are two
(internally) vertex-disjoint paths between u and v.	

	
By Menger’s Theorem, if vertices u and v are 2-vertex-connected,
then removal of any vertex (≠ u, v) leaves them in same connected
component.	

	
Can define a 2-vertex-connected block of G as a maximal subset
B ⊆ V s. t. u and v are 2-vertex-connected for all u, v ∈ B.	

Blocks = Components	

Bounds for Undirected G	

Q1: Find whether G is 2-vertex-connected

(2-edge-connected).
I.e., find one connectivity cut (if any)	

	

Q2: Find all connectivity cuts
(articulation points, bridges) in G	

	

Q3: Find the 2-connectivity (2-vertex-,
2-edge- connected) blocks of G	

	

Q4: Find the 2-connectivity (2-vertex-,
2-edge-connected) components of G	

O(m+n)	

	

	

O(m+n)	

	

	

O(m+n)	

	

O(m+n)	

	

[R.E.Tarjan, SIAM Journal on Computing 1972]	

Directed Graphs	

	
Let G = (V,E) be a directed graph, with m edges and n vertices. 	

	
G is strongly connected if there is a directed path from each vertex to
every other vertex in G.	

	
The strongly connected components (SCCs) of G are its maximal
strongly connected subgraphs.	

	

Directed Graphs	

	
Let G = (V,E) be a directed graph, with m edges and n vertices. 	

	
G is strongly connected if there is a directed path from each vertex to
every other vertex in G.	

	
The strongly connected components (SCCs) of G are its maximal
strongly connected subgraphs.	

	

Undirected: 2-Edge Connectivity	

	
Let G = (V,E) be a connected graph, with m edges and n
vertices. 	

	
An edge (u,v) ∈ E is a bridge if its removal increases the
number of connected components of G 	

	
Graph G is 2-edge-connected if it has no bridges.	

	
The 2-edge-connected components of G are its maximal
2-edge-connected subgraphs	

Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed strongly connected graph,
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a strong bridge if its removal
increases the number of strongly connected components
of G 	

	
	

Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed
strongly connected graph,
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a
strong bridge if its removal
increases the number of
strongly connected
components of G 	

	
	

A B

C

D E

F J

H I

K

Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed
strongly connected graph,
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a
strong bridge if its removal
increases the number of
strongly connected
components of G 	

	
	

A B

C

D E

F J

H I

K

strong bridge

Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed
strongly connected graph,
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a
strong bridge if its removal
increases the number of
strongly connected
components of G 	

	
	

A B

C

D E

F J

H I

K

strong bridge

Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed
strongly connected graph,
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a
strong bridge if its removal
increases the number of
strongly connected
components of G 	

	
	

A B

C

D E

F J

H I

K

strong bridge

Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed
strongly connected graph,
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a
strong bridge if its removal
increases the number of
strongly connected
components of G 	

	
	

A B

C

D E

F J

H I

K

strong bridge

Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed
strongly connected graph,
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a
strong bridge if its removal
increases the number of
strongly connected
components of G 	

	
	

A B

C

D E

F J

H I

K

strong bridge

Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed
strongly connected graph,
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a
strong bridge if its removal
increases the number of
strongly connected
components of G 	

	
	

A B

C

D E

F J

H I

K

strong bridge

Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed
strongly connected graph,
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a
strong bridge if its removal
increases the number of
strongly connected
components of G 	

	
	

A B

C

D E

F J

H I

K

strong bridge

Directed: 2-Edge Connectivity	

	
Let G = (V,E) be a directed strongly connected graph,
with m edges and n vertices. 	

	
An edge (u,v) ∈ E is a strong bridge if its removal
increases the number of strongly connected components
of G 	

	
Graph G is 2-edge-connected if it has no strong bridges.	

	
The 2-edge-connected components of G are its maximal
2-edge-connected subgraphs	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

strong bridge

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

strong bridge

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

strong bridge

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

strong bridge

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

Vertices u and v are 2-edge-connected if there are two edge-disjoint paths
from u to v and two edge-disjoint paths from v to u.	

	

By Menger’s Theorem, vertices u and v are 2-edge-connected if and only
if the removal of any edge leaves them in same strongly connected
component.	

	

	

	

	

	

	

Can define a 2-edge-connected block of G as a maximal subset B ⊆ V s. t.
u and v are 2-edge-connected for all u, v ∈ B.	

u v

P2P 2-Edge Connectivity	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

strong bridge

2-Edge-Connected Comp’s ≠ Blocks	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

2-edge-connected 	

components	

2-edge-connected 	

blocks	

A B

C

D E

F J

H I

K

A B

C

D E

F J

H I

K

A B

C

D E

F J

H I

K

2-Edge-Connected Comp’s ≠ Blocks	

2-Edge-Connected Blocks	

How easy is it to compute 2-edge-connected blocks?	

Can we just remove strong bridges? 	

Undirected: 2-Vertex Connectivity	

	
Let G = (V,E) be an undirected connected graph, with m edges and n
vertices. 	

	
A vertex v ∈ V is an articulation point if its removal increases the
number of connected components of G. 	

	
Graph G is 2-vertex-connected if it has at least 3 vertices (don’t allow
for degenerate components) and no articulation points.	

	
The 2-vertex-connected components of G are its maximal 2-vertex-
connected subgraphs.	

	
	

Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a directed strongly connected graph, with m edges and
n vertices. 	

	
A vertex v ∈ V is a strong articulation point if its removal, increases the
number of strongly connected components of G. 	

	
 	
	

Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a
directed strongly
connected graph, with
m edges and n
vertices. 	

	

	
A vertex v ∈ V is a
strong articulation
point if its removal,
increases the number
of strongly connected
components of G. 	

	
	
	

A B

C

D E

F J

H I

K

strong bridge

strong
articulation point

Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a
directed strongly
connected graph, with
m edges and n
vertices. 	

	

	
A vertex v ∈ V is a
strong articulation
point if its removal,
increases the number
of strongly connected
components of G. 	

	
	
	

A B

D E

F J

H I

K

strong bridge

strong
articulation point

C

Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a
directed strongly
connected graph, with
m edges and n
vertices. 	

	

	
A vertex v ∈ V is a
strong articulation
point if its removal,
increases the number
of strongly connected
components of G. 	

	
	
	

A B

C

D E

F J

H I

K

strong bridge

strong
articulation point

Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a
directed strongly
connected graph, with
m edges and n
vertices. 	

	

	
A vertex v ∈ V is a
strong articulation
point if its removal,
increases the number
of strongly connected
components of G. 	

	
	
	

A B

C

D E

F J

I

K

strong bridge

strong
articulation point

H

Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a
directed strongly
connected graph, with
m edges and n
vertices. 	

	

	
A vertex v ∈ V is a
strong articulation
point if its removal,
increases the number
of strongly connected
components of G. 	

	
	
	

A B

C

D E

F J

H I

K

strong bridge

strong
articulation point

Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a
directed strongly
connected graph, with
m edges and n
vertices. 	

	

	
A vertex v ∈ V is a
strong articulation
point if its removal,
increases the number
of strongly connected
components of G. 	

	
	
	

A B

C

D

E

F J

H I

K

strong bridge

strong
articulation point

Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a
directed strongly
connected graph, with
m edges and n
vertices. 	

	

	
A vertex v ∈ V is a
strong articulation
point if its removal,
increases the number
of strongly connected
components of G. 	

	
	
	

A B

C

D E

F J

H I

K

strong bridge

strong
articulation point

Directed: 2-Vertex Connectivity	

	
Let G = (V,E) be a directed strongly connected graph, with m edges and
n vertices. 	

	
A vertex v ∈ V is a strong articulation point if its removal, increases the
number of strongly connected components of G. 	

	
Graph G is 2-vertex-connected if it has at least 3 vertices (don’t allow
for degenerate components) and no strong articulation points.	

	
The 2-vertex-connected components of G are its maximal 2-vertex-
connected subgraphs.	

	
	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

Vertices u and v are 2-vertex-connected if there are two (internally) vertex-
disjoint paths from u to v and two (internally) vertex-disjoint paths from
v to u.	

	

By Menger’s Theorem, if vertices u and v are 2-vertex-connected then the
removal of any vertex (≠ u, v) leaves them in same strongly connected
component.	

	

	

	

	

	

Can define a 2-vertex-connected block of G as a maximal subset B ⊆ V
s. t. u and v are 2-vertex-connected for all u, v ∈ B.	

P2P 2-Vertex Connectivity	

u v
u v

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

strong bridge

strong
articulation point

2-Vertex-Connected Comp’s ≠ Blocks	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

F

H

K

C

D E E

J

I

A B

K

E

F J

I H I

C

D E

A B

C

D E

F J

H I

K

2-vertex-connected 	

components	

2-vertex-connected 	

blocks	

2-Vertex-Connected Comp’s ≠ Blocks	

Big Picture (Undirected)	

2!"#

2$"#

2!""

2$""

=

=

Big Picture (Directed)	

2!"#

2$"# 2!"" 2$""

Bounds for Directed G	

Q1: Find whether G is 2-vertex-

connected (2-edge-connected).
I.e., find one connectivity cut (if any)	

	

Q2: Find all 2-connectivity cuts
(articulation points, bridges) in G	

	

Q3: Find the 2-connectivity (2-vertex-,
2-edge- connected) blocks of G	

	

Q4: Find the 2-connectivity (2-vertex-,
2-edge-connected) components of G	

 O(m+n)	

 [Tarjan 76] + [Gabow &

Tarjan 83]	

 [Georgiadis 10]	

	

 O(m+n)	

 [Italiano et al 10]	

	

 O(m+n)	

 [Georgiadis et al 15]	

	

 O(mn)	

	
[Jaberi 14]	

Can we do better?	

	

Can

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

strong bridge

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

strong bridge

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

strong bridge

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

strong bridge

2-Edge Connected Components	

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAA

A B

C

D E

F J

H I

K

2-Edge Connected Components	

Why should we care?	

	
Theoretically interesting problem	

	
It also has several intriguing applications	

Bounds for Directed G	

Q1: Find whether G is 2-vertex-connected

(2-edge-connected).
I.e., find one connectivity cut (if any)	

	

Q2: Find all 2-connectivity cuts
(articulation points, bridges) in G	

	

Q3: Find the 2-connectivity (2-vertex-,
2-edge- connected) blocks of G	

	

Q4: Find the 2-connectivity (2-vertex-,
2-edge-connected) components of G	

 O(m+n)	

 [Tarjan 76] + [Gabow &

Tarjan 83]	

 [Georgiadis 10]	

	

 O(m+n)	

 [Italiano et al 10]	

	

 O(m+n)	

 [Georgiadis et al 15]	

	

 O(mn)	

	
[Jaberi 14]	

	

Today’s Outline	

1.  2-Connectivity on directed graphs	

2.  Algorithms for strong articulation

points and strong bridges	

3.  Experiments	

4.  Open Problems	

Naive Algorithms	

Check whether vertex v is strong articulation point in G : 	

	
Compute strongly connected components of G/{v}	

	

O(n(m+n)) for computing all strong articulation points	

	

Check whether edge e is strong bridge in G : 	

 	
Compute strongly connected components of G/{e}	

	

O(m(m+n)) for computing all strong bridges	

Not difficult to get O(n(m+n)) algorithm 	

Flow graphs and Dominators	

	
A flow graph G(s) = (V,E,s) is a
directed graph with a start vertex s in
V such that every vertex in V
reachable from s 	
	

	
	

1

3 2

6

7 5 4

Flow graphs and Dominators	

	
A flow graph G(s) = (V,E,s) is a
directed graph with a start vertex s in
V such that every vertex in V
reachable from s 	
	

	
Given a flow graph G(s)=(V,E,s), can
define a dominance relation: vertex v
dominates vertex w if every path
from s to w includes v	

	
	

Flow graphs and Dominators	

	
A flow graph G(s) = (V,E,s) is a
directed graph with a start vertex s in
V such that every vertex in V
reachable from s 	
	

	
Given a flow graph G(s)=(V,E,s), can
define a dominance relation: vertex v
dominates vertex w if every path
from s to w includes v	

	
Let dom(w) be set of vertices that
dominate w. For any w ≠ s we have
that {s,w} ⊆ dom(w): s and w are the
trivial dominators of w	

Dominator Trees	

	
Dominance relation is transitive and its
transitive reduction is referred to as the
dominator tree DT(s).	

	
DT(s) rooted at s.	

	
v dominates w if and only if v is
ancestor of w in dominator tree DT(s). 	

	
If v dominates w, and every other non-
trivial dominator of v also dominates w,
v is an immediate dominator of w.	

	
If v has any non-trivial dominators,
then v has a unique immediate
dominator: the immediate dominator of
v is the parent of v in the dominator
tree DT(s).	

1

3 2

6

7 5 4

1

3 2

6 7 5 4

Dominator Trees	

1

3 2

6

7 5 4

1

3 2

6 7 5 4

Dominators (and dominator tree)
can be computed in O(m+n) time:	

[Buchsbaum, Kaplan, Rogers & Westbrook ‘04]	

[Georgiadis & Tarjan ‘04]	

[Alstrup, Harel, Lauridsen &Thorup ‘97]	

	
Lemma 1 Let G = (V,E) be a strongly connected
graph, and let s be any vertex in G. Let G(s) =
(V,E,s) be the flow graph with start vertex s. If v is a
non-trivial dominator of a vertex w in G(s), then v is
a strong articulation point in G.	

 	

Vertex Dominators and SAP	

	
Lemma 1 Let G = (V,E) be a strongly connected
graph, and let s be any vertex in G. Let G(s) =
(V,E,s) be the flow graph with start vertex s. If v is a
non-trivial dominator of a vertex w in G(s), then v is
a strong articulation point in G.	

 	
 1 2

3 4 5

6 7

Vertex 3 is strong
articulation point in G

Vertex 3 is a non-trivial
dominator in G(2)

2

3

1 4 5 6 7

Vertex Dominators and SAP	

	
Lemma 2 Let G = (V,E) be a strongly connected
graph. If v is a strong articulation point in G, then
there must be a vertex s ∈ V such that v is a non-
trivial dominator of a vertex w in the flow graph
G(s) = (V,E,s).	

 	

1 2

3 4 5

6 7

Vertex 5 must be non-trivial
dominator in some G(s). Here s=6.

Vertex 5 is strong
articulation point in G

5

6

7

1 2 3 4

Vertex Dominators and SAP	

Still Not Efficient	

	
Corollary Let G = (V,E) be a strongly connected
graph. Vertex u is a strong articulation point in G
if and only there is a vertex s∈V such that u is a
non-trivial dominator of a vertex v in the flow
graph G(s) = (V,E,s).	

 	

	
Must compute dominator trees for all flow graphs
G(v), for each vertex v in V, and output all non-
trivial dominators found.	

Dominator Trees	

2

3

1 4 5 6 7

6

4

5

1 2 3 7

1

3

2 4 6 7 5

3

1

2

4 5 6 7

5

1 2 4 6 7 5

5

6

7

1 2 3 4

5

7

6

1 2 3 4

1 2

3 4 5

6 7

G

 Dominator Trees

6

Still Not Efficient	

	
Corollary Let G = (V,E) be a strongly connected
graph. Vertex u is a strong articulation point in G
if and only then there is a vertex s∈V such that u
is a non-trivial dominator of a vertex v in the flow
graph G(s) = (V,E,s).	

 	
 	
Must compute dominator trees for all flow graphs
G(v), for each vertex v in V, and output all non-
trivial dominators found.	

 Like trivial algorithm 	

	
	

 Takes O(n(m+n)) time 	

 Only more complicated... 	

	
	

Reversal Graph	

	
Observation. Let G = (V,E) be a strongly connected
graph and GR = (V,ER) be its reversal graph. Then GR
is strongly connected. Furthermore, vertex v is a
strong articulation point in G if and only if v is a
strong articulation point in GR.	

 	

	
Reversal Graph GR = (V,ER) : reverse all edges in G.
If (u,v) in G then (v,u) in GR.	

Exploit Dominators	

	
Theorem. Let G = (V,E) be a strongly connected graph, and
let s ∈ V be any vertex in G. Then vertex v ≠ s is a strong
articulation point in G if and only if v ∈ D(s) ∪ DR(s).	

 	

Given a strongly connected graph G=(V,E), let 	

•  G(s) = (V,E,s) be the flow graph with start vertex s 	

•  D(s) the set of non-trivial dominators in G(s)	

•  GR(s) = (V,ER,s) be the flow graph with start vertex s 	

•  DR(s) the set of non-trivial dominators in GR(s)	

Strong Articulation Points	

Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G
if and only if v ∈ D(s) ∪ DR(s).	

Proof:	

If v ∈ D(s) ∪ DR(s) we know from previous lemmas that v must be an
articulation point. 	

So, we need to prove only one direction.	

Strong Articulation Points	

1

s
s

Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G
if and only if v ∈ D(s) ∪ DR(s).	

Proof: Let v be a strong articulation point	

'

G\{v}

G

Strong Articulation Points	

1

s
s '

,
,

Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G
if and only if v ∈ D(s) ∪ DR(s).	

Proof: Let v be a strong articulation point	

G

G\{v}

Strong Articulation Points	

1

s
s '

,
,

Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G
if and only if v ∈ D(s) ∪ DR(s).	

Proof: Let v be a strong articulation point	

G

G\{v}

Strong Articulation Points	

1

s
s '

,
,

Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G
if and only if v ∈ D(s) ∪ DR(s).	

Proof: Let v be a strong articulation point	

 v ∈ D(s)

G

G\{v}

1

s
s '

,
,

Theorem. Let G = (V,E) be a strongly connected graph, and let s ∈ V
be any vertex in G. Then vertex v ≠ s is a strong articulation point in G
if and only if v ∈ D(s) ∪ DR(s).	

Proof: Let v be a strong articulation point	

	

 v ∈ DR(s)

G

G\{v}

Strong Articulation Points	

Linear-Time Algorithm	

Input: A strongly connected graph G = (V , E), with n vertices and m
edges. 	

Output: The strong articulation points of G.	

1.  Choose arbitrarily a vertex s ∈ V in G, and test whether s is a
strong articulation point in G. If s is a strong articulation point,
then output s.	

2.  Compute and output D(s), the set of non-trivial dominators in the
flow graph G(s) = (V,E,s).	

3.  Compute the reversal graph GR = (V,ER).	

4.  Compute and output DR(s), the set of non-trivial dominators in the
flow graph GR(s) = (V,ER,s).	

	
Total time is O(m+n)	

Strong Bridges	

4 ' 4 '

Lemma. If there is an algorithm to compute the strong
articulation points of a strongly connected graph in
time T(m,n), then there is algorithm to compute the
strong bridges of a strongly connected graph in time
O(m + n + T(2m, n + m)).	

 	

“Proof” :	

1. Reduction:	

Mainly of theoretical interest (# vertices blows up)	

Strong Bridges	

Φu,v

Strong Bridges	

	
Edge (u,v) dominates vertex w if every path from s to v
contains edge (u,v)	

	
If edge (u,v) dominates vertex w, and every other edge
dominator of u dominates w, we say that (u,v) is an
immediate edge dominator of vertex w.	

	
If a vertex has an edge dominator, then it has a unique
immediate edge dominator.	

	
With some care, able to extend all the theory from (vertex)
dominators to edge dominators.	

	
Given a flow graph G(s) = (V,E,s), edge dominators can be
computed in time O(m+n). But you need to re-implement
code for dominators.	

2. Edge Dominators	

Edge Dominators in Practice	

	
Lemma. [Tarjan 1974] Let G = (V,E,s) be a flow graph and let
T be a DFS tree of G with start vertex s. Edge (v,w) is an edge
dominator in flow graph G if and only if all of the following
conditions are met:
- (v,w) is a tree edge,
- w has no entering forward edge or cross edge, and
- there is no back edge (x,w) such that w does not dominate x.	

	
Need to (1) compute dominator tree DT(s) and (2) check
whether w ancestor of x in DT(s) for back edge (x,w). 	

	
Given a flow graph G(s) = (V,E,s), edge dominators can be
computed in time O(m+n). Reuse code for (vertex) dominators.
More efficient in practice. But still slightly slower than (vertex)
dominators.	

Computing All Strong Bridges	

	
Theorem. Let G = (V,E) be a strongly connected graph, and
let s ∈ V be any vertex in G. Then edge (u,v) is a strong
bridge in G if and only if (u,v) ∈ ED(s) ∪ EDR(s).	

 	

Given a strongly connected graph G=(V,E), let 	

•  G(s) = (V,E,s) be the flow graph with start vertex s 	

•  ED(s) the set of edge dominators in G(s)	

•  GR(s) = (V,ER,s) be the flow graph with start vertex s 	

•  EDR(s) the set of edge dominators in GR(s)	

	
Incidentally, this proves also that can be at most 2n-2 strong
bridges in a directed graph.	

1.  2-Connectivity on directed graphs	

2.  Algorithms for strong articulation points

and strong bridges	

3.  Experiments (very rough, still ongoing)	

4.  Open Problems	

Today’s Outline	

2-Connectivity	

	
Can 2-connectivity be useful to understand the
(macroscopic) structure of social networks / web
graphs / other networks?	

 Do social networks / web graphs / other networks
have different 2-connectivity properties?	

 Nodes / links which act more as “information”
gateways (tweets / diseases / etc…) in the network?	

	
	
	

2-Vertex Cores	

	
Delete recursively all the strong articulation points of a
directed graph G, as follows	

	
While there are strong articulation points in G do:	

1.  Let G’ be the graph defined by all the s.c.c.’s of G;	

2.  Set G to be the graph obtained by deleting all the strong

articulation points in G’ together with their incident edges.	

	
Let Gf be the final graph obtained at the end of this process.	

	
We call the s.c.c.’s of Gf the 2-vertex connectivity cores of
the original graph G	

	
2-vertex connectivity cores are subsets of 2-vertex-
connected components	

	

	

2-Vertex-Connected Components and
2-Vertex Cores	

2-Edge Cores	

	
Delete recursively all the strong bridges of directed graph
G, as follows	

	
While there are strong bridges in G:	

1.  Let G’ be the graph defined by all the s.c.c.’s of G;	

2.  Set G to be the graph obtained by deleting all the strong bridges

in G’.	

	
Let Gf be the final graph obtained at the end of this process.	

	
The s.c.c.’s of Gf are the 2-edge connectivity cores of the
original graph G	

	
2-edge connectivity cores are exactly 2-edge-connected
components	

	
	

	

2-Edge-Connected Components
= 2-Edge Cores	

A Hierarchy of 2-Components	

	
2-vertex core subset of 2-vertex-
connected component (modulo
degenerate components)	

	
	

2-vertex
core 	

2-vertex-conn.
comp. 	

test	

A Hierarchy of 2-Components	

	
2-vertex core subset of 2-vertex-
connected component (modulo
degenerate components)	

	
2-vertex-connected component
subset of 2-edge-connected
component	

	
	

2-vertex
core 	

2-edge-conn.
comp. 	

2-vertex-conn.
comp. 	

test	

A Hierarchy of 2-Components	

	
2-vertex core subset of 2-vertex-
connected component (modulo
degenerate components)	

	
2-vertex-connected component
subset of 2-edge-connected
component	

	
2-edge-connected component
subset of strongly connected
component	

	
Roughly speaking:	

	
2VC ⊆ 2VCC ⊆ 2ECC ⊆ SCC	

 (Will integrate blocks in our
experiments soon)	

2-vertex
core 	

2-edge-conn.
comp. 	

giant s.c.c.	

2-vertex-conn.
comp. 	

test	

Data Set	

101

Size of the giant 2-vertex- and 2-edge-connected component (l2VCC and l2ECC)
and in the largest 2-vertex-connected core (l2C).

(Expressed as % of vertices in the lSCC)

Social: Bigger 2-Components…	

102

Size of the giant 2-vertex- and 2-edge-connected component (l2VCC and l2ECC)
and in the largest 2-vertex-connected core (l2C).

(Expressed as % of vertices in the lSCC)

…some have small cores…	

103

Number of vertices and edges in the final graph Gf obtained after removing
recursively all strong articulation points.

(Expressed as % of n and m)

…but are buried deep inside	

Biconnectivity: Web Graphs	

uk-2002@1M (n = 1M, m = 41.2M)

Biconnectivity: Social Networks	

twitter-2010 (n = 41.6M, m = 1,468.3M)

twitter-higgs-follow (n = 456K, m = 14.8M)

Biconnectivity: Social (sub)networks	

Biconnectivity: Co-Purchase	

amazon-2008 (n = 735K, m = 5.1M)

108

 [B
ol

di
, R

os
a

&
 V

ig
na

 2
01

3]

30% LP on Web Graphs	

uk-2002@1M (n = 1M, m = 41.2M)

30% LP on Web Graphs	

uk-2002@1M (n = 1M, m = 41.2M)

30% LP on Social Networks	

twitter-higgs-follow (n = 456K, m = 14.8M)

30% LP on Social Networks	

twitter-higgs-follow (n = 456K, m = 14.8M)

1.  2-Connectivity on directed graphs	

2.  Algorithms for strong articulation points

and strong bridges	

3.  Experiments	

4.  Open Problems	

Today’s Outline	

Open Problems	

 	

Can the 2-vertex and 2-edge-connected components of a
directed graph be computed in linear time?	

	

	
Best known time is O(n(m+n)) by repeatedly	

	
deleting strong articulation points / strong bridges.	

	

	
Can a dynamic algorithm help you?	

	

Higher connectivity cuts in strongly connected graphs in
linear time? (e.g., separation pairs: vertex and edge cuts of
cardinality 2)	

	

	

	

	

	

Open Problems / Future Work	

Would like to understand more the structure and
the properties of 2-connectivity components /
blocks (especially in real-world graphs)	

	

	

	

	

	

Ya. M. Erusalimskii and G. G. Svetlov. Bijoin points, bibridges, and
biblocks of directed graphs. Cybernetics, 16(1):41-44, 1980.	

	

W. Di Luigi, L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis 2-
Connectivity in Directed Graphs: An Experimental Study. 17th SIAM
Meeting on Algorithm Engineering and Experimentation (ALENEX
2015).	

	

D. Firmani, G. F. Italiano, L. Laura, A. Orlandi, and F. Santaroni.
Computing strong articulation points and strong bridges in large scale
graphs. In Proc. 10th Int'l. Symp. on Experimental Algorithms (SEA),
195-207, 2012.	

	

L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-edge
connectivity in directed graphs. In Proc. 26th ACM-SIAM Symp. on
Discrete Algorithms (SODA), 2015. To appear. 	

	

L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex
connectivity in directed graphs. CoRR, abs/1409.6277, 2014.	

References	

L. Georgiadis, L. Laura, N. Parotsidis, and R. E. Tarjan. Dominator
certication and independent spanning trees: An experimental study. In
Proc. 12th Int'l. Symp. on Experimental Algorithms (SEA), 284-295,
2013.	

	

L. Georgiadis, L. Laura, N. Parotsidis, and R. E. Tarjan. Loop nesting
forests, dominators, and applications. In Proc. 13th Int'l. Symp. on
Experimental Algorithms (SEA), 174-186, 2014.	

	

G. F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and
strong articulation points in linear time. Theoretical Computer Science,
447(0):74-84, 2012.	

	

R. Jaberi. Computing the 2-blocks of directed graphs. CoRR, abs/
1407.6178, 2014.	

	

R. Jaberi. On computing the 2-vertex-connected components of directed
graphs. CoRR, abs/1401.6000, 2014.	

References	

