Formal Models for Programming and Composing
Correct Distributed Systems

N y 4
H!l iversité L u d OVI c H e n rl o : informatiques g”mathématiques
1CE€ SOPHIA ANTIPOLIS

LIAMA open day
Shanghai — April 2013

OASIS Team
INRIA — UNS - I3S — CNRS
Sophia Antipolis

Objective

Help the programmer write
correct distributed applications, and run them safely.

By designing languages and middlewares

By proving their properties

By providing tools to support the development and proof of
correct programs

-

\

Programming easily correct concurrent programs is still a
challenge

~

Distributed programming is even more difficult, and more and
more useful (cloud computing, service oriented computing ...)

General approach

4 :
Programming Implementatio
model and
- definitio Optimizations

Verification and
tools

Optimizations

General approach

4 :
Programming Implementatio
model and
- definitio Optimizations

Verification tools

Definitions and Properties hs

check the
proofs

General approach

4 :
Programming Implementatio
model and
- definitio Optimizations

Verification tools

Agenda
introduction:lEormaliMethods
2 Oll. A Distributed Component Model{_X
l1l. Behavioural Specification
IV. Dynamicity

V. A Few Hot Topics

What are (our) Components?

Primitive component —/
Business code
Client

Server / output
[/ input

//

What are (our) Components?

Composite component
| | Primitive component Primitive component | |
| . LN . ol
Business code [T~ 72— Busmesscode—l—
N |
7 |

» Grid Component Model (GCM)
An extension of Fractal for Distributed computing

x

(ore GRED_—
—— —

8

But what is a Good size for a
(primitive) Component?
Not a strict requirement, but somehow imposed by the

model design

* According to CCA or SCA, a service (a component
contains a provided business function)

» According to Fractal, a few objects
* According to GCM, a process

4

N

» In GCM/ProActive,

1 Component (data/code unit)
= 1 Active object (1 thread = unit of concurrency)
= 1 Location (unit of distribution)

/

GCM: A Grid Extension tS Fractal for Autonomous Distributed Components - F. Baude, D.

2

Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, C. Pérez - Annals of Telecom. - 2008

A Primitive GCM Component

Cl

\ Cl.foo(p) —

In ProActive/GCM a primitive component is an active object

» Primitive components communicating by asynchronous
requests on interfaces
» Components abstract away distribution and concurrency

10

Futures for Components

)
G I
®
—_

)3

Component are independent entities
(threads are isolated in a component)
+

Asynchronous requests with results
2

Futures are necessary

11

First-class Futures

Only strict operations are blocking (access to a future)
Communicating a future is not a strict operation

In ProActive and ASP. futures are created and
accessed implicitly (no explicit type “future”)
IN contrast with Creol, Jcobox, ...

12

First-class Futures and Hierarchy

return C1.foo(x) |

’/
.
: y A
4
[2
- *
. o *
L)
“ * *
- %, *
L]

T

. ..r,._.\' /_N‘

Without first-class futures, one thread is systematically
o blocked in the composite component.
A lot of blocked threads

In GCM/ProActive = systematic deadlock

13

Back to Formal Methods:
a Framework for Reasoning on Components

* Formalise GCM in a theorem prover (Isabelle/HOL)
Component hierarchical Structure

datatype Component = Primitive Name Interfaces PrimState
| Composite Name Interfaces (Component list) (Binding set) CompState

* Bindings, etc...
* Design Choices
- Suitable abstraction level
- Suitable representation (List / Finite Set, etc ...)
« Basic lemmas on component structure

14

A semantics of Primitive Components

* Primitive components are defined by interfaces plus an
internal behaviour, they can:

- emit requests
I~

- serve requests < -F
N ~
- send results

- receive results (at any time) N, iad
- do internal actions //Q g
Components can have any

behaviour

BUT some rules define a correct behaviour,
e.g. one can only send result for a served request

15

Communication inside Composites

CoOMMPARENT
CommCHILD !

\ !
1 1

\
\ 1
\

!
CoMMBROTHERS ComrosITECALL'

« Composites only delegate calls between components
* Use the bindings to know where to transmit requests
« Component system behaviour is expressed as a small step
semantics, and specified on paper and in Isabelle/HOL

A Framework for Reasoning on Component Composition
Ludovic Henrio, Florian Kammuller, and Muhammad Uzair Khan - FMCO 2009, Springer

16

Future Update Strategies (Muhammad Khan)

* How to bring future values to components that need them?

« A "naive” approach: Any component can receive a value for
a future reference it holds.

 More operational is the lazy approach:

require future value
- T =~

~
AN

'
Ho+_ !
_|

\ 4

H 4 H

17

Eager home-based future update

 avoids to store future values indefinitely
* Relies on future registration

register future

Results sent as soon as available
Every component with future reference is registered
Un-necessary transfers
Garbage collection of computed results possible
Formalised in Isabelle

First Class Futures: Specification and Implementation of Update Strategies
L. Henrio, Muhammad U. Khan, Nadia Ranaldo, Eugenio Zimeo CoreGRID@ Europar 2010.

-

18

Eager forward-based strategy

« A strategy avoiding to store future values indefinitely

e Future updates follow the same path as future flow

« Each component remembers only the components to

which it forwarded the future

1 ¥

) ENK'Z2E N

Results sent as soon as available
No additional message
Future updates form a chain (intermediate
components
Easy to garbage collect computed results

19

Properties on Future updates

« Future updates remove all references to a given future

lemma UpdatedFutureDisappear:
"l S—f,v, N=rS2, RL; CorrectComponent S; (S2°°N) = Some C ; f ¢ set (snd v)]

—> f ¢ LocalRefFutSet C)"
> O || carbage

collectable

 All Future references are registered during reduction
theorem FuturesRegistered:

"[- C1 ~» C2; CorrectComponent C1; GlobalRegisteredFuturesComp C1]
—> GlobalRegisteredFuturesComp C2"

Complete '
P registerNuture 7

registration s

— '_-”

Ludovic Henrio and Muhammad Uzair Khan “‘“Asynchronous Components with Futures:
Semantics and Proofs in Isabelle/HOL” - FESCA 2010 - ENTCS

20

A “refined” GCM model in Isabelle/HOL

* More precise than GCM, give a semantics to the model:

- asynchronous communications: future / requests

- request queues
- no shared memory between components

- notion of request service
 More abstract than ProActive/GCM

- can be multithreaded

- no active object, not particularly object-oriented

A guide for implementing and proving properties of
component middlewares

21

2 >

Agenda
Introduction:}EormaliMethods
AVDistributediComponentiModel

l1l. Behavioural Specification

IV. Dynamicity

V. A Few Hot Topics

<<

22

How to ensure the
correct behaviour of a given program?

« Theorem proving too complicated for the ProActive
programmer

* Our approach: behavioural specification

Service methods] | | | Service methods | 1

000 ™10

Y
—+. L

» Trust the implementation step

» Or static analysis

» Generate correct (skeletons of) components
NS (+static and/or runtime checks) J

Behavioural Models for Distributed Fractal Components Antonio Cansadg..L.udovic
Henrio, and Eric Madelaine - Annals of TeI%@mmuh&é‘tiOhs_;*‘2008

Use-case: Fault-tolerant storage

BFT Composite

* 1 composite
componentwith2 |4

Write(fid, b)

Good
ISIave1 \

external services 43.3322 B
Read/Write. F 0
g| Slave3
avei

* The service requests

are delegated to the
Master.

« 1 multicast interface sending write/read/commit requests
to all slaves.

* the slaves reply asynchronously, the master only needs
enough coherent answers to terminate

Verifying Safety of Fault-Tolerant Distributed Components |
Rabéa Ameur-Boulifa, Raluca Halalai, Ludovic Henrio, and Eric Madelaine - FACS 2011 24

Full picture: a pNet

R_ACGet(F)

Q Write(fid,b) @ A&iﬁ;; e
Q_Read(fid) , T r———
/ : Group Manager Slave[k]
Serve * |
, E [Proxy Manager } By RN : Queue
Body ' ,f":","""'

Actlvam

- grc) WLy

C s

R_. ml& -ﬂﬂ' " ,
Wri 2
5_ ntc(ﬁd) O 'Qte Pl’OXy)
C Q- cu(nxmt(' JCommit[c] '
! -

R_Read(fid,b) |

: s Prox rﬁg_ --F--"
- [\) Read() _Ro.yd[c] >

<_7 Ty oy Ty T (kH'Q-mn(.fa a'Tg) k 7 -m:'l,(f7 am)» — Q-m’n(fa a"rgz);

Basic pNets: parameterized LTS

) — MethodRead
7

?Call_Read Eoma 5l

!Call_GetF

\

7R_GetF(f)
awaited:=agree; nb_Sla&e:=3*f+l

agree:=2*f+1;

|
'Get_Rend_Proxy ll

"R_Get_Read_Proxy(pl)

[nb_r_agree<agree
& awaited<nb_slave]
awaited ++

'WaitN_Read(pl, awzuted)

'Call_Prox_v_Rend(pl.b) 'R_Read(b)

'WaitN_Rend(pl.awaited)

(L—%o-—o-—o-—o-—o-—o

é"R_WaitN_Read(pl,rRep)

'CollateReplles(rRep) (#
!

/&R _CollateReplies(nb_r_agree) |

|

[nb_r_agree<agree '
yGetBit(b)

& awaited=nb_slave] ..f L Eagressmagree]

'Error(notBFT) / ’Get 2
éﬁ)l‘/ \ x”’,”/
")

Labelled

transition

systems, with:
Value passing

Local
variables

Guards....

Can be written

as a UML
diagram

26

Properties proved

* Reachability(*):
1- The Read service can terminate
V fid:nat among {0...2}. 3 b:bool. <true™ . {!/R_Read !fid !b}> true
2- Is the BFT hypothesis respected by the model ?
< true* . 'Error (NotBFT)> true

e Termination:

After receiving a Q_Write(f,x) request, it is (fairly) inevitable that the Write
services terminates with a R_Write(f) answer, or an Error is raised.

4)

Prove
» generic properties like absence of deadlock
» or properties specific to the application logic

- A

27

Recent advances in

QO
Q7 $ o
$ ~ Q & 9 a,
Qéb ; @@ &°°o° @S’?‘Z\ ¥ 5
: O S
v g & OF Lo S &
. S . & . O S L &8, ¢ ¢
S S & L NN L £ &
v A N > & o 29 o K
@ & & °¢§ &P s &
& S > S IS S &
Q S & © S &
O & v

« Scaling-up : gained orders of magnitude by a combination of:
- data abstraction,
- compositional and contextual minimization,
- distributed state-space generation.

« Specified formally the whole generation process (submitted)

28

Agenda
Sintroduction=lEormaliMethods

[FWAIDistributediComponentiModel

SBehaviouralfSpecification

IV. Dynamicity

V. A Few Hot Topics

29

Adaptation in the GCM 00
* Functional adaptation: adapt the architecturqmi
+ behaviour of the application to new ;

requirements/objectives :I I.

* Non-functional adaptation:
adapt the architecture of the container+middleware to

Both functional and non-functional adaptation are expressed
as reconfigurations

Language support for distributed reconfiguration:
GCM-script

A platform for designing and running autonomic components

A Component Platform for Experimenting with Autonomic Composition 30
Francoise Baude, Ludovic Henrio, and Paul Naoumenko. Autonomics 2007 .

Formalising Reconfiguration (preliminary)

* In our Isabelle/HOL model component structure known at

runtime
l.e. semantic rules reason on the component structure

- Two reconfiguration primitives formalised (remove and
replace)
- lllustrates the flexibility of the approach
- Basic proofs
* |n our pNets model
- Old results: start/stop/bind for Fractal components

- Concerning GCM: formalisation and experiments in
progress

31

Agenda
Sintroduction:lEormaliMethods
| =wASDistributediComponentiModel

[[MBehavioural Q pecification

1Vv. J\/Mk’ anOﬁr\J

2 V. A Few Hot Topics

32

Correct component reconfiguration
Towards safety and autonomicity

 Verify reconfiguration
procedures

« Safe adaptation procedures

as a solid ground for
autonomic applications

« Some directions:

- Parameterized topologies: ADL[N] ; behavioural
specification (pNets) + reconfiguration primitives

- Use of theorem proving + prove equivalence between the
Isabelle GCM model and the behavioural specification
=>»prove and use generic properties of

reconfiguration procedures

33

Correct component reconfiguration
Towards safety and autonomicity

 Verify reconfiguration
procedures

« Safe adaptation procedures
as a solid ground for [N]
autonomic applications

« Some directions:

- Parameterized topologies: ADL[N] ; behavioural
specification (pNets) + reconfiguration primitives

- Use of theorem proving + prove equivalence between the
Isabelle GCM model and the behavioural specification
=>»prove and use generic properties of

reconfiguration procedures

34

Primitive Multi-Active GCM Component

N

=
S

|_ N

=

>

o

|

_|

Provided add, add and monitor are compatible

Y Y —
add() { add() { Enonitor()
ClLf
) 2o .} L) —

e Qur proposal, a programming model that mixes local

parallelism and distribution with high-level programming

constructs

Henrio, Ludovic, Fabrice i-luet, Zsolt Istvan, and Zsolt Istv. 2013.
“Multi-threaded Active Objects.” in COORDINATION 2013.

Multi-active objects: Results / Status

Implemented multi-active objects above ProActive
Added dynamic compatibility rules

Used on case studies (NAS, CAN)

Specified the semantics of Multi-ASP

800 (a,0) =10 (@', 0")
Proved fl rSt a|FiR.[a]: R, o]|| (0 — o|F:R.[a']: R;o'] |

ACTIVE
th at tWO rec 600 ~ fresh activity name fos fresh fulurc, 0~ = Copys&Merge(o,v; &, to)
ol R [Active()]; o || — o 15 R J|| [Z: [to-mo([]) — fz): Do,]|
500

REQUEST

on(t) =7 " ¢ dom(og) “fresh future o'y = CopysMerge(on, i ; o5, 1"
f 3 I

NeXt Ste pS- 400 O,[s Re[em; ()] :(7(,] Il 8[F; :1?':(7,,]) — n‘[‘RS R:] Hi[| : :R'::[v}zj:z,": f]:(ff,] I
. 300 \DSERVICE
- P u bI IS h t PRpsRREE /" ¢ dom(o) o' = CopysMerge(o,i: o,1")

. 200 afFiu— fr o[— a|Fufed Tl
- Formalis _,
oalt)=f ol = CopysMerge(o s, Lf; Onst) (foup)eF '
— Use the | 0 al O o] || B[FC 18] (| — e 150 el | B[FC 1 o] |
P t SERVE N
_ rove S I C = [R[Serve(M)]— fol:[ai— f:]""|C SeqSchedule(M, { f;}*<"", Futures(C"), R) = ([m, f.1], R')
a5 Ci R o]0 — n[[ro.m(0) = fl=[RIN]= folz[ai— fi]<"|C": R 11
PARSERVE .
C = [R[Serve(M)]~ fol:[a;— f:]=4"|C’ ParSchedule(M, { f;}*%" Futures(C' = ([m, f,¢], R")

(1'[:ChR;]H —'(1[1() m()*_’/]HR[[]]’_’fU]:[“i’_’f] cl ”(R]H

CAN dissemination algorithm
Distributed systems + theorem proving

 CANSs are P2P networks organised in a cartesian space of
N-dimensions (used for RDF data-storage)

* Objective: disseminate efficiently information (no duplicate)
« Designed an efficient algorithm (tested)

 Proved the existence of an

efficient broadcast in Isabelle K E G
Next steps:
* Prove the designed algorithm C D

is efficient 7 A H

e Conduct large-scale

experiments (ONGOING
e Study churns

Bongiovanni, Francesco, and Ludovic Henrio.
“A Mechanized Model for CAN Protocols.” in FASE 2013.

37

THANK YOU for your attention

Questions ???

: informatiques #”mathématiques
http://www-sop.inria.fr/oasis/Ludovic.Henrio/ -
Université
Nice sornix axtivors
Cré]rs OASIS Team
INRIA — UNS - I3S — CNRS

Sophia Antipolis

38

39

