
Formal Models for Programming and Composing
Correct Distributed Systems

Ludovic Henrio

OASIS Team
INRIA – UNS – I3S – CNRS
Sophia Antipolis

LIAMA open day
 Shanghai – April 2013

Objective

Help the programmer write
correct distributed applications, and run them safely.

•  By designing languages and middlewares
•  By proving their properties
•  By providing tools to support the development and proof of

correct programs

2

Programming easily correct concurrent programs is still a
challenge

Distributed programming is even more difficult, and more and
more useful (cloud computing, service oriented computing …)

General approach

3

Programming
model and
definitions Optimizations

Implementation

Optimizations

Verification and
tools

Generic
properties

4

Programming
model and
definitions Optimizations

Implementation

Optimizations

Verification tools

Generic
properties

Definitions and Properties
are easy to understand

check the
proofs

General approach

5

Programming
model and
definitions Optimizations

Implementation

Optimizations

Verification tools

Generic
properties

Definitions and Properties
are easy to understand

General approach

Agenda

II.  A Distributed Component Model

III. Behavioural Specification

IV. Dynamicity

V.  A Few Hot Topics

6

What are (our) Components?

7

Business code
Primitive component

Server
/ input

Client
/ output

What are (our) Components?

8

Business code
Primitive component

Business code
Primitive component

Composite component

Ø Grid Component Model (GCM)
An extension of Fractal for Distributed computing

But what is a Good size for a
 (primitive) Component?

Not a strict requirement, but somehow imposed by the
model design
•  According to CCA or SCA, a service (a component

contains a provided business function)
•  According to Fractal, a few objects
•  According to GCM, a process

9
GCM: A Grid Extension to Fractal for Autonomous Distributed Components - F. Baude, D.
Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, C. Pérez - Annals of Telecom. - 2008

Ø  In GCM/ProActive,

1 Component (data/code unit)
= 1 Active object (1 thread = unit of concurrency)

 = 1 Location (unit of distribution)

A Primitive GCM Component

10

CI.foo(p)

In ProActive/GCM a primitive component is an active object

Ø Primitive components communicating by asynchronous
requests on interfaces

Ø  Components abstract away distribution and concurrency

CI

Futures for Components

11

f=CI.foo(p)
……….
g=f+3 g=f+3 Component are independent entities

(threads are isolated in a component)
+

Asynchronous requests with results
ê

Futures are necessary

1

2

3

First-class Futures

12

f=CI.foo(p)

…
…
… CI.foo(f) CI.foo(f) Only strict operations are blocking (access to a future)

 Communicating a future is not a strict operation

In ProActive and ASP, futures are created and
accessed implicitly (no explicit type “future”)

IN contrast with Creol, Jcobox, ...

First-class Futures and Hierarchy

… …
…

Without first-class futures, one thread is systematically
blocked in the composite component.

A lot of blocked threads
In GCM/ProActive  systematic deadlock

return C1.foo(x)

13

Back to Formal Methods:
a Framework for Reasoning on Components
•  Formalise GCM in a theorem prover (Isabelle/HOL)

Component hierarchical Structure

•  Bindings, etc…
•  Design Choices
-  Suitable abstraction level
-  Suitable representation (List / Finite Set, etc …)

•  Basic lemmas on component structure

14

Business code

Business code

Primitive component

Primitive component

Composite component

A semantics of Primitive Components

•  Primitive components are defined by interfaces plus an
internal behaviour, they can:
-  emit requests
-  serve requests
-  send results
-  receive results (at any time)
-  do internal actions
Components can have any

behaviour
BUT some rules define a correct behaviour,
e.g. one can only send result for a served request

15

Communication inside Composites

16

•  Composites only delegate calls between components
•  Use the bindings to know where to transmit requests
•  Component system behaviour is expressed as a small step
semantics, and specified on paper and in Isabelle/HOL

A Framework for Reasoning on Component Composition
Ludovic Henrio, Florian Kammüller, and Muhammad Uzair Khan - FMCO 2009, Springer

Future Update Strategies (Muhammad Khan)

•  How to bring future values to components that need them?
•  A “naive” approach: Any component can receive a value for

a future reference it holds.
•  More operational is the lazy approach:

17

require future value

Eager home-based future update

•  avoids to store future values indefinitely
•  Relies on future registration

18

register future

register future

Results sent as soon as available
Every component with future reference is registered

Un-necessary transfers
Garbage collection of computed results possible

Formalised in Isabelle
First Class Futures: Specification and Implementation of Update Strategies
L. Henrio, Muhammad U. Khan, Nadia Ranaldo, Eugenio Zimeo CoreGRID@Europar 2010.

Eager forward-based strategy

•  A strategy avoiding to store future values indefinitely
•  Future updates follow the same path as future flow
•  Each component remembers only the components to

which it forwarded the future

19

Results sent as soon as available
No additional message

Future updates form a chain ⎝ intermediate
components

Easy to garbage collect computed results

Properties on Future updates

•  Future updates remove all references to a given future

•  All Future references are registered during reduction

lemma UpdatedFutureDisappear:
"� S� ⌅f, v, N ⇤⇥F S2, RL; CorrectComponent S; (S2^^N) = Some C ; f /⌅ set (snd v)⇥
=⇤ f /⌅ LocalRefFutSet C)"

theorem FuturesRegistered:
"� ⇥ C1 � C2; CorrectComponent C1; GlobalRegisteredFuturesComp C1⇥
=� GlobalRegisteredFuturesComp C2"

register future

Garbage
collectable

Complete
registration

Ludovic Henrio and Muhammad Uzair Khan “Asynchronous Components with Futures:
Semantics and Proofs in Isabelle/HOL” - FESCA 2010 - ENTCS 20

A “refined” GCM model in Isabelle/HOL

•  More precise than GCM, give a semantics to the model:
-  asynchronous communications: future / requests
-  request queues
-  no shared memory between components
-  notion of request service

•  More abstract than ProActive/GCM

-  can be multithreaded
-  no active object, not particularly object-oriented

21

Similarities with: SCA and Fractal (structure),
 Creol (futures)

A guide for implementing and proving properties of
component middlewares

Agenda

III. Behavioural Specification

IV. Dynamicity

V.  A Few Hot Topics

22

How to ensure the
correct behaviour of a given program?

•  Theorem proving too complicated for the ProActive
programmer

•  Our approach: behavioural specification

23

Service methods Service methods

pNets:

Behavioural Models for Distributed Fractal Components Antonio Cansado, Ludovic
Henrio, and Eric Madelaine - Annals of Telecommunications - 2008

Ø  Trust the implementation step
Ø Or static analysis
Ø Generate correct (skeletons of) components

(+static and/or runtime checks)

Use-case: Fault-tolerant storage

 24

•  1 composite
component with 2
external services
Read/Write.

•  The service requests
are delegated to the
Master.

•  1 multicast interface sending write/read/commit requests
to all slaves.

•  the slaves reply asynchronously, the master only needs
enough coherent answers to terminate

Verifying Safety of Fault-Tolerant Distributed Components
Rabéa Ameur-Boulifa, Raluca Halalai, Ludovic Henrio, and Eric Madelaine - FACS 2011

Full picture: a pNet

25

!Q_Write(b)

?Q_Write(x)

Syncronisation vectors

Basic pNets: parameterized LTS

 26

Labelled
transition
systems, with:
•  Value passing
•  Local

variables
•  Guards….

Can be written
as a UML
diagram

Eric MADELAINE

Properties proved

•  Reachability(*):
1- The Read service can terminate
 ∀ fid:nat among {0...2}. ∃ b:bool. <true* . {!R_Read !fid !b}> true
2- Is the BFT hypothesis respected by the model ?
 < true* . 'Error (NotBFT)'> true

•  Termination:
 After receiving a Q_Write(f,x) request, it is (fairly) inevitable that the Write
services terminates with a R_Write(f) answer, or an Error is raised.

•  Functional correctness:
 After receiving a ?Q_Write(f1,x), and before the next ?Q_Write, a ?Q_Read
requests raises a !R_Read(y) response, with y=x

(*) Model Checking Language (MCL), Mateescu et al, FM’08

27

Prove
Ø  generic properties like absence of deadlock
Ø  or properties specific to the application logic

Recent advances in
behavioural specification for GCM

•  Scaling-up : gained orders of magnitude by a combination of:
-  data abstraction,
-  compositional and contextual minimization,
-  distributed state-space generation.

•  Specified formally the whole generation process (submitted)

 28

Agenda

IV. Dynamicity

V.  A Few Hot Topics

29

Adaptation in the GCM

•  Functional adaptation: adapt the architecture
+ behaviour of the application to new
 requirements/objectives

•  Non-functional adaptation:
adapt the architecture of the container+middleware to
changing environment/NF requirements (QoS …)

Additional support for reconfiguration
(Marcela Rivera):
•  A stopping algorithm for GCM

components
•  A Scripting language for reconfiguring

distributed components
30

A Component Platform for Experimenting with Autonomic Composition
Françoise Baude, Ludovic Henrio, and Paul Naoumenko. Autonomics 2007.

Both functional and non-functional adaptation are expressed
as reconfigurations

Language support for distributed reconfiguration:
GCM-script

A platform for designing and running autonomic components

Formalising Reconfiguration (preliminary)

•  In our Isabelle/HOL model component structure known at
runtime
i.e. semantic rules reason on the component structure
-  Two reconfiguration primitives formalised (remove and

replace)
-  Illustrates the flexibility of the approach
-  Basic proofs

•  In our pNets model
-  Old results: start/stop/bind for Fractal components
-  Concerning GCM: formalisation and experiments in

progress

31

Agenda

V.  A Few Hot Topics

32

Correct component reconfiguration
Towards safety and autonomicity

•  Verify reconfiguration
procedures

•  Safe adaptation procedures
as a solid ground for
autonomic applications

•  Some directions:
-  Parameterized topologies: ADL[N] ; behavioural

specification (pNets) + reconfiguration primitives
-  Use of theorem proving + prove equivalence between the

Isabelle GCM model and the behavioural specification
 èprove and use generic properties of
 reconfiguration procedures

33

Correct component reconfiguration
Towards safety and autonomicity

•  Verify reconfiguration
procedures

•  Safe adaptation procedures
as a solid ground for
autonomic applications

•  Some directions:
-  Parameterized topologies: ADL[N] ; behavioural

specification (pNets) + reconfiguration primitives
-  Use of theorem proving + prove equivalence between the

Isabelle GCM model and the behavioural specification
 èprove and use generic properties of
 reconfiguration procedures

34

[N]

Primitive Multi-Active GCM Component

35

add() {
…
… }

monitor()
{…
… }

add() {
CI.foo(p)
}

Provided add, add and monitor are compatible

Henrio, Ludovic, Fabrice Huet, Zsolt István, and Zsolt Istv. 2013.
“Multi-threaded Active Objects.” in COORDINATION 2013.

•  Our proposal, a programming model that mixes local
parallelism and distribution with high-level programming
constructs

•  Implemented multi-active objects above ProActive
•  Added dynamic compatibility rules
•  Used on case studies (NAS, CAN)
•  Specified the semantics of Multi-ASP
•  Proved first properties, i.e., the semantics guarantees

that two requests executed in parallel are compatible

•  Next steps:
-  Publish the model
-  Formalisation in Isabelle/HOL
-  Use the new model
-  Prove stronger properties (confluence?)

Multi-active objects: Results / Status

36

CAN dissemination algorithm
Distributed systems + theorem proving

•  CANs are P2P networks organised in a cartesian space of
N-dimensions (used for RDF data-storage)

•  Objective: disseminate efficiently information (no duplicate)
•  Designed an efficient algorithm (tested)
•  Proved the existence of an

efficient broadcast in Isabelle
Next steps:
•  Prove the designed algorithm

is efficient
•  Conduct large-scale

experiments (ONGOING
•  Study churns

37

K

F
A

C

E G

H

I B J

D D

E

C

K G

H

J B I

F

Bongiovanni, Francesco, and Ludovic Henrio.
“A Mechanized Model for CAN Protocols.” in FASE 2013.

THANK YOU for your attention

Questions ???

38

OASIS Team
INRIA – UNS – I3S – CNRS
Sophia Antipolis

http://www-sop.inria.fr/oasis/Ludovic.Henrio/

39

