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Objective 

Help the programmer write  
correct distributed applications, and run them safely. 

•  By designing languages and middlewares 
•  By proving their properties 
•  By providing tools to support the development and proof of 

correct programs 
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Programming easily correct concurrent programs is still a 
challenge 

 

Distributed programming is even more difficult, and more and 
more useful (cloud computing, service oriented computing …) 



General approach 
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What are (our) Components? 
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What are (our) Components? 

8 
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Ø Grid Component Model (GCM)  
An extension of Fractal for Distributed computing 

 



But what is a Good size for a 
 (primitive) Component? 

Not a strict requirement, but somehow imposed by the 
model design 
•  According to CCA or SCA, a service (a component 

contains a provided business function) 
•  According to Fractal, a few objects  
•  According to GCM, a process 
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GCM: A Grid Extension to Fractal  for Autonomous Distributed Components - F. Baude, D. 
Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, C. Pérez - Annals of Telecom. - 2008 
 

Ø  In GCM/ProActive,  
 

1 Component (data/code unit)  
= 1 Active object (1 thread = unit of concurrency) 

 = 1 Location (unit of distribution) 



A Primitive GCM Component 
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CI.foo(p) 

In ProActive/GCM a primitive component is an active object 
 

Ø Primitive components communicating by asynchronous 
requests on interfaces 

Ø   Components abstract away distribution and concurrency 

CI 



Futures for Components 
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f=CI.foo(p) 
………. 
g=f+3 g=f+3 Component are independent entities  

(threads are isolated in a component) 
+ 

Asynchronous requests with results 
ê 

Futures are necessary 

1 

2 

3 



First-class Futures 
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f=CI.foo(p) 

… 
… 
… CI.foo(f) CI.foo(f)  Only strict operations are blocking (access to a future) 

 Communicating a future is not a strict operation 
 

In ProActive and ASP, futures are created and 
accessed implicitly (no explicit type “future”)  

IN contrast with Creol, Jcobox, ... 



First-class Futures and Hierarchy 

…   …   
… 

Without first-class futures, one thread is systematically 
blocked in the composite component. 

A lot of blocked threads 
In GCM/ProActive    systematic deadlock 

return C1.foo(x) 
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Back to Formal Methods: 
a Framework for Reasoning on Components 
•  Formalise GCM in a theorem prover (Isabelle/HOL ) 

Component hierarchical Structure 

•  Bindings, etc… 
•  Design Choices 
-  Suitable abstraction level 
-  Suitable representation (List / Finite Set, etc …) 

•  Basic lemmas on component structure 
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A semantics of Primitive Components 

•  Primitive components are defined by interfaces plus an 
internal behaviour, they can: 
-  emit requests 
-  serve requests 
-  send results 
-  receive results (at any time) 
-  do internal actions 
Components can have any  

behaviour 
BUT some rules define a correct behaviour,  
e.g. one can only send result for a served request 
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Communication inside Composites 
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•  Composites only delegate calls between components 
•  Use the bindings to know where to transmit requests 
•  Component system behaviour is expressed as a small step 
semantics, and specified on paper and in Isabelle/HOL 

A Framework for Reasoning on Component Composition 
Ludovic Henrio, Florian Kammüller, and Muhammad Uzair Khan - FMCO 2009, Springer 



Future Update Strategies (Muhammad Khan) 

•  How to bring future values to components that need them? 
•  A “naive” approach: Any component can receive a value for 

a future reference it holds.  
•  More operational is the lazy approach: 
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require future value 



Eager home-based future update 

•  avoids to store future values indefinitely 
•  Relies on future registration 
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register future 

register future 

Results sent as soon as available 
Every component with future reference is registered 

Un-necessary transfers 
Garbage collection of computed results possible 

Formalised in Isabelle 
First Class Futures: Specification and Implementation of Update Strategies  
L. Henrio, Muhammad U. Khan, Nadia Ranaldo, Eugenio Zimeo CoreGRID@Europar 2010. 



Eager forward-based strategy 

•  A strategy avoiding to store future values indefinitely 
•  Future updates follow the same path as future flow 
•  Each component remembers only the components to 

which it forwarded the future 
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Results sent as soon as available 
No additional message 

Future updates form a chain ⎝ intermediate 
components 

Easy to garbage collect computed results 



Properties on Future updates 

•  Future updates remove all references to a given future 

•  All Future references are registered during reduction 

lemma UpdatedFutureDisappear:
"� S� ⌅f, v, N ⇤⇥F S2, RL; CorrectComponent S; (S2^^N) = Some C ; f /⌅ set (snd v)⇥
=⇤ f /⌅ LocalRefFutSet C)"

theorem FuturesRegistered:
"� ⇥ C1 � C2; CorrectComponent C1; GlobalRegisteredFuturesComp C1⇥
=� GlobalRegisteredFuturesComp C2"

register future 

Garbage 
collectable 

Complete 
registration 

Ludovic Henrio and Muhammad Uzair Khan “Asynchronous Components  with Futures:  
Semantics and Proofs in Isabelle/HOL” - FESCA 2010 - ENTCS   20 



A “refined” GCM model in Isabelle/HOL 

•  More precise than GCM, give a semantics to the model: 
-  asynchronous communications: future / requests 
-  request queues 
-  no shared memory between components 
-  notion of request service 

•  More abstract than ProActive/GCM 

-  can be multithreaded 
-  no active object, not particularly object-oriented 
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Similarities with: SCA and Fractal (structure),  
     Creol (futures) 

 

A guide for implementing and proving properties of 
component middlewares 
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How to ensure the  
correct behaviour of a given program? 

•  Theorem proving too complicated for the ProActive 
programmer 

•  Our approach: behavioural specification 
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Service methods Service methods 

pNets: 

Behavioural Models for Distributed Fractal Components Antonio Cansado, Ludovic 
Henrio, and Eric Madelaine - Annals of Telecommunications - 2008 

Ø  Trust the implementation step 
Ø Or static analysis 
Ø Generate correct (skeletons of) components  

(+static and/or runtime checks) 



Use-case: Fault-tolerant storage 
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•  1 composite 
component with 2 
external services 
Read/Write. 

•  The service requests 
are delegated to the 
Master. 

•   1 multicast interface sending write/read/commit requests 
to all slaves. 

•   the slaves reply asynchronously, the master only needs 
enough coherent answers to terminate  

Verifying Safety of Fault-Tolerant Distributed Components   
Rabéa Ameur-Boulifa, Raluca Halalai, Ludovic Henrio, and Eric Madelaine - FACS 2011 



Full picture: a pNet 
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!Q_Write(b) 

?Q_Write(x) 

Syncronisation vectors 



Basic pNets: parameterized LTS 
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Labelled 
transition 
systems, with: 
•  Value passing 
•  Local 

variables 
•  Guards…. 

Can be written 
as a UML 
diagram 

Eric MADELAINE   



Properties proved 

•  Reachability(*): 
1- The Read service can terminate 
          ∀ fid:nat among {0...2}. ∃ b:bool.  <true* . {!R_Read !fid !b}> true 
2- Is the BFT hypothesis respected by the model ? 
            < true* . 'Error (NotBFT)'> true 
 
•  Termination: 
   After receiving a Q_Write(f,x) request, it is (fairly) inevitable that the Write 
services terminates with a R_Write(f) answer, or an Error is raised. 
 
•  Functional correctness: 
   After receiving a ?Q_Write(f1,x), and before the next ?Q_Write, a ?Q_Read 
requests raises a !R_Read(y) response, with y=x 
 
(*) Model Checking Language (MCL), Mateescu et al, FM’08 
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Prove  
Ø  generic properties like absence of deadlock  
Ø  or properties specific to the application logic 



Recent advances in  
behavioural specification for GCM 

•  Scaling-up : gained orders of magnitude by a combination of: 
-  data abstraction, 
-  compositional and contextual minimization, 
-  distributed state-space generation. 

•  Specified formally the whole generation process (submitted) 

 28 
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Adaptation in the GCM 

•  Functional adaptation: adapt the architecture  
+ behaviour of the application to new 
 requirements/objectives 

•  Non-functional adaptation:  
adapt the architecture of the container+middleware to 
changing environment/NF requirements (QoS …) 

Additional support for reconfiguration 
(Marcela Rivera): 
•  A stopping algorithm for GCM  

components 
•  A Scripting language for reconfiguring  

distributed components 
30 

A Component Platform for Experimenting with Autonomic Composition 
Françoise Baude, Ludovic Henrio, and Paul Naoumenko.  Autonomics 2007. 

Both functional and non-functional adaptation are expressed 
as reconfigurations  

 

Language support for distributed reconfiguration:  
GCM-script 

 
A platform for designing and running autonomic components 



Formalising Reconfiguration (preliminary) 

•  In our Isabelle/HOL model component structure known at 
runtime  
i.e. semantic rules reason on the component structure 
-  Two reconfiguration primitives formalised (remove and 

replace) 
-  Illustrates the flexibility of the approach 
-  Basic proofs 

•  In our pNets model 
-  Old results: start/stop/bind for Fractal components 
-  Concerning GCM: formalisation and experiments in 

progress 
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Agenda 

V.  A Few Hot Topics 
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Correct component reconfiguration 
Towards safety and autonomicity 

•  Verify reconfiguration  
procedures  

•  Safe adaptation procedures  
as a solid ground for  
autonomic applications 

•  Some directions: 
-  Parameterized topologies: ADL[N] ; behavioural 

specification (pNets) + reconfiguration primitives  
-  Use of theorem proving + prove equivalence between the 

Isabelle GCM model and the behavioural specification  
  èprove and use generic properties of  
   reconfiguration procedures 
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[N] 



Primitive Multi-Active GCM Component 
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add() { 
… 
… } 

monitor()
{… 
… } 

add() { 
CI.foo(p) 
} 

Provided add, add and monitor are compatible 

Henrio, Ludovic, Fabrice Huet, Zsolt István, and Zsolt Istv. 2013.  
“Multi-threaded Active Objects.” in COORDINATION 2013. 

•  Our proposal, a programming model that mixes local 
parallelism and distribution with high-level programming 
constructs 



•  Implemented multi-active objects above ProActive 
•  Added dynamic compatibility rules 
•  Used on case studies (NAS, CAN) 
•  Specified the semantics of Multi-ASP 
•  Proved first properties, i.e., the semantics guarantees 

that two requests executed in parallel are compatible 
 

•  Next steps: 
-  Publish the model 
-  Formalisation in Isabelle/HOL 
-  Use the new model 
-  Prove stronger properties (confluence?) 

Multi-active objects: Results / Status 
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CAN dissemination algorithm  
Distributed systems + theorem proving 

•  CANs are P2P networks organised in a cartesian space of 
N-dimensions (used for RDF data-storage) 

•  Objective: disseminate efficiently information (no duplicate) 
•  Designed an efficient algorithm (tested) 
•  Proved the existence of an 

efficient broadcast in Isabelle 
Next steps: 
•  Prove the designed algorithm 

is efficient 
•  Conduct large-scale  

experiments (ONGOING 
•  Study churns 
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Bongiovanni, Francesco, and Ludovic Henrio.  
“A Mechanized Model for CAN Protocols.” in FASE 2013. 



THANK YOU for your attention 

Questions ??? 
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