
Verification of CCSL

Specifications

www.omgmarte.org

Ling YIN

Objective

�Exhaustive Verification with CCSL

� Observer-based (LCTES’09, SIES’10)

• Verify that a property specified in CCSL holds for a given
implementation

� ICECCS’11

• Verify that a property specified in LTL holds for a given
CCSL specification => SPIN

• Means: Transformation into Promela

– Pro: Promela supports non-deterministic choice

– Pro: Promela is used in TrustableMDA

– Con: Promela is asynchronous, does not natively support
simultaneity

November 16th, 2010 UML & FM 2

CCSL -> Promela

� Get some inspiration from the operational semantics of
CCSL
� CCSL clocks: encoded as shared boolean variables

� A run :
• a sequence of coincident instants

• valid evolution conforming to the specification

• Promela must explore ALL the valid runs

� A coincident instant
• consists of several valid configurations

• each configuration is a set of ticking decisions, {a,¬b}

• which configuration is chosen is non-deterministic

� A step :
• Decide what clocks MUST or CANNOT fire (enabled)

• Choose what clocks ACTUALLY fire (firing)
– Non-deterministic choice

– Conflicts

November 16th, 2010 UML & FM 3

typedef Clock { bool must_tick, cannot_tick, actually_tick, dead };

CCSL -> Promela

� Global clock declaration

� Operator process instantiations + init process

� A coincident instant

Start Firing End

Start: compute ticking decisions(must,cannot)

Firing: chose what clocks actually fire, non-determinsitic

End: update+reset

Order:

November 16th, 2010 UML & FM 4

typedef Clock { bool must_tick, cannot_tick, actually_tick, dead };

a

b

a

b

Example

proctype alternatesWith(int cLeft; cRight) {

bool state = true;

do

:: start_proc?true;

if

:: state -> clocks[cRight].cannot_tick = true ;

:: ! state -> clocks[cLeft]:cannot tick = true ;

fi;

end_proc?true;

if

:: state -> if :: clocks[cLeft].actually_tick -> state = false

:: else -> skip fi

:: !state -> if :: clocks[cRight].actually_tick -> state = true

:: else -> skip fi

fi

od

}

November 16th, 2010 UML & FM 5

Enabling

Global non-deterministic choice

State

Update

a ~ b

• T={S,A,->,I,clp}, each transition is

labeled by a set of actions,

representing clock decisions in

the coincident instant;clp

indicates checkpoints

Composition

November 16th, 2010 UML & FM 6

Verifying LTL properties on CCSL

� Special variable `inst’ guaranteeing properties are

checked each `coincident instant’

November 16th, 2010 UML & FM 7

Encoding correctness

LTL property pattern

+ coincident encoding Checkpoint bisimulation equivalent

November 16th, 2010 UML & FM 8

• Checkpoint bisimulation checks

from checkpoint to checkpoint,

requiring compared systems have

executed the same set of visible

actions. Orders of the actions are

irrelevant

• It preserves logical truth under

the pattern

• It is a congruence w.r.t parallel

composition

Discussion

�Synchronous Transition System

� easier with synchronous models, NuSMV (except defer)

� Choices among valid configurations

Unpredictable random -> predictable

� Conflict-free,

Condition: for all states, each pair of transitions, (m1-m,m2-m) independent

Independent: 1)Not connected, don’t affect common clocks (too strong, e.g.

prevent c=a sup b) � 2) build dependent relations for each state, only one instant

(still strong, prevent c=a union b, may cause problem on strictSampling)

� Otherwise,

• Some clocks tick in some paths, while can not tick in others (deadlock or not)

• If then else case

November 16th, 2010 UML & FM 9

m1 m2

m1Πm2=m

m2-m+x m1-m+x

1) a sub b,

a ~b

c=a sup b
b

a

b

a

2) c=a sup b
b

a

c
b

a

cAfter a
After b

b a

c

Non Conflict-free examples

� Single operator: sampling, preemption

� Conflict caused by non conflict-free operators

• a sub c, d=c filterby(01)w, d=f preemption b

b blocks d->c->a

ac,b involved in disjoint operators.

(b in operator o3, while a and c involved in operator o1 and o2.

)

November 16th, 2010 UML & FM 10

a,ba,c
b

no c anymore

c=a preemption b

Non Conflict-free examples

� Composition of conflict-free operators:

• 1) Choosing one path blocks unchosen clocks

b= a wait 1, c sub b c=a union b, c ~ d, b <d

d=c filterby (01)w,

a sub c, b sub c, b<d

November 16th, 2010 UML & FM 11

b

no c anymore

a,c
d d

deadlock

But removing d<d

(lower one) yields

conflict-free, even

it does not satisfy

the definition

used above.

Right now, ignore

this case in the

definition.

d d d

block d-> c->a,b

Non Conflict-free examples

• 2)Choosing one path doesn’t block unchosen clocks,

but forcing different new clocks

d=a sup b, e=a intersection d

� If then else case:

a sub m, b sub n

c=a union b, b<d, a<d, c ~d, a#b

November 16th, 2010 UML & FM 12

b a

a
,b

,d
,e

Looking for condition for conflict-free

�Not composition preserving

� Composition of self conflict-free operators may

introduce conflict

� Restrict conflict operators may end as non

conflict-free specification

• c=a strictSampling b, a~b

November 16th, 2010 UML & FM 13

