
Challenges and Results in
Virtual Prototyping

Vania Joloboff

INRIA
Also Senior Visiting Scientist at Shenzhen Institute of
Advanced Technologies

Shanghai November 2011 2

LIAMA

 LIAMA is the Sino French Laboratory of Informatics,
Applied Mathematics and Automation
 Established initially in 1997 as a single place laboratory at the

Chinese Academy of Sciences Institute of Automation
 LIAMA is now a distributed laboratory with many

partners
 France: INRIA, CNRS, Ecoles Centrales, U. Grenoble
 Europe: U. of Brussels, U. of Wagenigen
 China: Beida, Beihang, Tsinghua and CAS institutes: CASIA,

ISCAS and SIAT
 The FORMES project is a joint project between INRIA,

CNRS, Tsinghua University and CAS SIAT
 With contribution from Beihang and Harbin Eng. University

Shanghai November 2011 3

Embedded Systems

An industrial embedded
systems product is a set
of hardware components

running dedicated
application software.

It should have no bugs and
adequate performance

Shanghai November 2011 4

Towards Full Virtual Prototyping

Real System
Prototype

Hardware
engineers

design
hardware
models

Application
Software

Hardware Models

Software engineers
design software models

Code generator

Generated code

Platform integration
(RTOS, application
specific libraries)

Virtual Prototyping Platform to run the
application software and validate hardware

functionality and performance

Virtual Prototype

Model design
and

verification

Verification
Tools

Shanghai November 2011 5

Virtual Prototyping example: i-Phone

Shanghai November 2011 6

Virtual Prototyping with Full System
Simulation

Build an executable model of the embedded system
electronics (the virtual prototype) and run the application software
on top of this virtual hardware

What is the appropriate technique to achieve virtual prototyping?

From the software point of view: Hardware simulation
must be fast enough to run the programs in a few
minutes, possibly seconds, not hours

From the hardware point of view: Performance
prediction and power consumption

From both: The simulation must produce the same
results as the real hardware

Today, this is a dream but we are making
progress towards the goal

Shanghai November 2011 7

Virtual Prototyping Research

 New architectures, new chips
 Today, we simulate ARM and PowerPC and MIPS
 Started the SH simulator
 Support for the new variable length encoding for Power
 We need many students on this topic…

 Fast Simulation
 Continue to improve our simulation speed

• Explore parallel simulation

 Certified Simulation
 Prove simulation is correct

 Approximately Timed
 Provide performance estimate of the simulated hardware

Very Fast Simulation

Execute only a few host machine
instructions for each application
software simulated instruction

Parallelize multi-core simulation

Shanghai November 2011 9

Early simulation: Interpreted Simulation
 Simulate the instruction fetch/decode/execute of the target processor
 Simulator code does essentially

do {
instruction = Fetch (current_pc); // result: 011100110011000111…
Decode (instruction); // result: “this is an addition instruction”
Execute (instruction); // result: the operands are added
} until End Of Program

Inefficiency due to decode multiple times the same instructions : speed < 10 Mips

Simulated
Memory Binary

instructions
Data

Fetch Decode Execute

Interpreted Instruction Set Simulation (ISS)

Shanghai November 2011 10

How to do better ?

 Technique: Dynamic binary translation
 Decode Only Once: The simulated binary proam (typically the operating

system binary, eg. Linux kernel) is dynamically translated into another
representation run on the simulation host

• Eliminate most of the decode time, speed up the execute time
 Cache the translated code for re-use (optimize)
 Translation can be done on segment or page basis

 Speed increases significantly > 15 Mips

CacheSimulated
Memory

Binary
instruction

s

Executable
RepresentationData

Fetch Decode Execute

yes
no

Transla
te

decoded?

Shanghai November 2011 11

CacheSimulated
Memory Binary

instructions

LLVMData

Fetch
Decode
Decompi
le

Execution engineyes

no

invalida
teno

yes

Native
Host Code

Run
Native

compile

High Speed Simulation

 Dramatically improve simulation speed using most recent compiling
technologies: dynamically translate simulated binary code into
optimized host code

 The machine code is first decompiled into a Control Flow Graph,
translated first in some Intermediate Language (LLVM from UIUC). ,
then optimized, then recompiled into host machine code and
executed under control of execution engine

Optimize

decoded?

Over
Write

Shanghai November 2011 12

Compiling speed

 The compiling speed becomes an issue
 If it takes time Ti to execute an instruction in interpreted mode,

and time C to compile, resulting in code whose execution takes
time Te, then it is only worth compiling when the instruction is
executed more than N times such that

• N * Ti > C + N * Te => C < (Ti -Te) / N

 Only frequently executed instructions are worth
compiling, those over some threshold N
 Value of N depends on compilation speed, in our case about

1000 instructions per second

 We always start simulation in interpreted mode, run
dynamic profiling and then selectively compile “hot” basic
blocks

Shanghai November 2011 13

Results

 Our progress
Speed in Mips 2007 2008 2009 2011

ARM32 6.62 15 75 120

 Can we do better ?
 Yes, but doing compilation on a separate processor,

parallelizing dynamic translation and execution
 Yes, by compiling larger chunks than basic blocks

Shanghai November 2011 14

Certified Simulation

Ideal: Certify that the simulator behaves exactly as the real
hardware

Assumption: there exists a formal specification of the HW, which may
not be available from the vendors (e.g ARM, IBM, Intel…) but that
can be developed or extracted from vendor’s specifications.

HW Formal
specs (in Coq)

Simulator
program

coded in C

Goal: Prove

(with a theorem prover)
that the C program

implements the specs

Fortunately, the C semantics in Coq have been developed
by the Compcert C program

We can re-use of lot of Compcert-C compiler code to
develop the simulator proof

Shanghai November 2011 15

Automated, Certified Simulation

Extractio
n Tool

Abstract
Syntax

Executable formal
processor

specification in Coq
Instruction
Set
Simulator

Simulator
Generator

Generated C code

Binary
decoder

Prove that the C code for
each instruction ends up
with the same result as
the formal definition

execi(M,S) -> M’, S’

Vendor
Specification
in .pdf

Add(P) {

int v = p.reg[d] += p.reg[src];

if (v > 0) p.neg = true else if (v>0)
p.pos=true else p.zero=true;

}
Coq Proof

Manual
Patch

}

Shanghai November 2011 16

Example of .pdf for ORR instruction

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

if ConditionPassed() then
 EncodingSpecificOperations();
 Shift_n = UInt(R[s]<7:0>);
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] OR shifted;
 R[d] = result;
 if setflags then
 APSR.N = result<31>; APSR.Z = IsZeroBit(result); APSR.C = carry;

Decoding info

Semantics info

Shanghai November 2011 17

Results

 We have completely generated the ARM V6 simulator
from the .pdf
 It runs at 95% the speed of the manually generated
 We found bugs in the documentation that created bugs in the

simulator (reported to ARM)
 Need some manual complement because the specification is not

enough strongly typed, or there are english sentences
 Strongly tested, runs a Linux platform

 We have completed a formal spec of ARM instruction set
 We have now complete proof for one instruction (100

more to go…)
 We have completely generated the SH instruction set

 Not tested yet, but proof of concept we can generate two
simulators for two architectures from the same abstract syntax

Shanghai November 2011 18

Approximately Timed Simulation

 Ideal: At the end of the simulation, the simulator reports
exactly how many clock cycles have elapsed to run the
software

 Cycle accurate simulators are extremely slow: unusable
for virtual prototyping.

 Reminder: the modern processors are designed to
execute at least 1 instruction per cycle (sometimes
more) with architecture support (caches, pipe line, etc). If
they don’t, it’s because there is a blocking factor…

 Idea: simulate enough of the system with a model to
compute the blocking factors and evaluate the delays
with approximation, without really simulating the HW

 Expectation : to get 90% of accuracy with >10 times the
speed of a CA simulator

Shanghai November 2011 19

Approximately Timed Simulation

 Example
 Processors have an instruction cache and instruction

buffer with a complex pre-fetch process. One can
approximate the pre-fetch by calculating cache
misses and resulting delays with abstract simulation
of the cache, the bus and memory.

 Processors have data cache. May be possibility of
fast calculation of the cache miss with a different
algorithm than the HW

 Under development
 An abstract cache simulator and an abstract pipe line

to evaluate the delays created

Shanghai November 2011 20

We are recruiting intern students

 Motivated students
 Reasonably good english : reading, speaking, writing
 Computer science background: we are looking for

students having at least one of these competences
 Real time systems, process control, concurrent // computing
 Modeling language experience: UML, SystemC
 Good object oriented C++ programming
 Compiler and operating systems, code generation
 Networking protocols: Ethernet, TCP/IP

 Experience with LINUX and handling software with
sophisticated control tools: subversion (svn), autoconf,
automake, make, etc. is a plus

 Write to vania.joloboff@inria.fr

谢谢 ,
Thank You,

Merci

