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LIAMA

 LIAMA is the Sino French Laboratory of Informatics, 
Applied Mathematics and Automation
 Established initially in 1997 as a single place laboratory at the 

Chinese Academy of Sciences Institute of Automation
 LIAMA is now a distributed laboratory with many 

partners
 France: INRIA, CNRS, Ecoles Centrales, U. Grenoble
 Europe: U. of Brussels, U. of Wagenigen
 China: Beida, Beihang, Tsinghua and CAS institutes: CASIA, 

ISCAS and SIAT
 The FORMES project is a joint project between INRIA, 

CNRS, Tsinghua University and CAS SIAT
 With contribution from Beihang and Harbin Eng. University
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Embedded Systems

An industrial embedded 
systems product is a set 
of hardware components 

running dedicated 
application software.

It should have no bugs and 
adequate performance
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Towards Full Virtual Prototyping 
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Virtual Prototyping example: i-Phone
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Virtual Prototyping with Full System 
Simulation

Build an executable model of the embedded system 
electronics (the virtual prototype) and run the application software 
on top of this virtual hardware

What is the appropriate technique to achieve virtual prototyping?

From the software point of view: Hardware simulation 
must be fast enough to run the programs in a few 
minutes, possibly seconds, not hours

From the hardware point of view: Performance 
prediction and power consumption

From both: The simulation must produce the same 
results as the real hardware

Today, this is a dream but we are making 
progress towards the goal
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Virtual Prototyping Research

  New architectures, new chips
 Today, we simulate ARM and PowerPC and MIPS
 Started the SH simulator
 Support for the new variable length encoding for Power 
 We need many students on this topic…

 Fast Simulation 
 Continue to improve our simulation speed

• Explore parallel simulation

 Certified Simulation
 Prove simulation is correct

 Approximately Timed
 Provide performance estimate of the simulated hardware



Very Fast Simulation

Execute only a few host machine 
instructions for each application 
software simulated instruction

Parallelize multi-core simulation
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Early simulation: Interpreted Simulation
 Simulate the instruction fetch/decode/execute of the target processor
 Simulator code does essentially

do {
instruction = Fetch (current_pc); // result: 011100110011000111…
Decode (instruction); // result: “this is an addition instruction”
Execute (instruction); // result: the operands are added
} until End Of Program

Inefficiency due to decode multiple times the same instructions : speed < 10 Mips

Simulated 
Memory Binary 

instructions
Data

Fetch Decode Execute

Interpreted Instruction Set Simulation (ISS)
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How to do better ?

 Technique: Dynamic binary translation
 Decode Only Once: The simulated binary proam (typically the operating 

system binary, eg. Linux kernel) is dynamically translated into another 
representation run on the simulation host

• Eliminate most of the decode time, speed up the execute time
 Cache the translated code for re-use  (optimize)
 Translation can be done on segment or page basis

 Speed increases significantly    > 15 Mips

CacheSimulated 
Memory

Binary 
instruction
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Executable 
RepresentationData

Fetch Decode Execute
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no

Transla
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CacheSimulated 
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High Speed Simulation

 Dramatically improve simulation speed using most recent compiling 
technologies: dynamically translate simulated binary code into 
optimized host code 

 The machine code is first decompiled into a Control Flow Graph, 
translated first in some Intermediate Language (LLVM from UIUC). , 
then optimized, then recompiled into host machine code and 
executed under control of execution engine

Optimize

decoded?

Over 
Write
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Compiling speed

 The compiling speed becomes an issue
 If it takes time Ti to execute an instruction in interpreted mode, 

and time C to compile, resulting in code whose execution takes 
time Te, then it is only worth compiling when the instruction is 
executed more than N times such that

• N * Ti > C + N * Te      =>   C < (Ti -Te ) / N

 Only frequently executed instructions are worth 
compiling, those over some threshold N
 Value of N depends on compilation speed, in our case about 

1000 instructions per second

 We always start simulation in interpreted mode, run 
dynamic profiling and then selectively compile “hot” basic 
blocks
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Results

 Our progress
Speed in Mips 2007 2008 2009 2011

ARM32 6.62  15 75 120

 Can we do better ?
 Yes, but doing compilation on a separate processor, 

parallelizing dynamic translation and execution
 Yes, by compiling larger chunks than basic blocks
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Certified Simulation

Ideal: Certify that the simulator behaves exactly as the real 
hardware

Assumption: there exists a formal specification of the HW, which may 
not be available from the vendors (e.g ARM, IBM, Intel…) but that 
can be developed or extracted from vendor’s specifications.

HW Formal 
specs (in Coq)

Simulator 
program 

coded in C

Goal: Prove 

(with a theorem prover) 
that the C program 

implements the specs

Fortunately, the C semantics in Coq have been developed 
by the Compcert C program

We can re-use of lot of Compcert-C compiler code to 
develop the simulator proof
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Automated, Certified Simulation

Extractio
n Tool

Abstract 
Syntax

Executable formal 
processor 

specification in Coq
Instruction 
Set 
Simulator

Simulator 
Generator

Generated C code

Binary 
decoder

Prove that the C code for 
each instruction ends up 
with the same result as 
the formal definition

execi(M,S) -> M’, S’

Vendor 
Specification 
in .pdf

Add(P) {

int v = p.reg[d] += p.reg[src]; 

if (v > 0) p.neg = true else if (v>0) 
p.pos=true else p.zero=true;

}
Coq Proof

Manual 
Patch

}
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Example of .pdf for ORR instruction

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == ‘1’); shift_t = DecodeRegShift(type);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

if ConditionPassed() then
    EncodingSpecificOperations();
    Shift_n = UInt(R[s]<7:0>);
    (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
    result = R[n] OR shifted;
    R[d] = result;
    if setflags then
      APSR.N = result<31>; APSR.Z = IsZeroBit(result); APSR.C = carry;

Decoding info

Semantics info
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Results

 We have completely generated the ARM V6 simulator 
from the .pdf
 It runs at 95% the speed of the manually generated
 We found bugs in the documentation that created bugs in the 

simulator (reported to ARM)
 Need some manual complement because the specification is not 

enough strongly typed, or there are english sentences
 Strongly tested, runs a Linux platform

 We have completed a formal spec of ARM instruction set
 We have now complete proof for one instruction (100 

more to go…)
 We have completely generated the SH instruction set

 Not tested yet, but proof of concept we can generate two 
simulators for two architectures from the same abstract syntax
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Approximately Timed Simulation

 Ideal: At the end of the simulation, the simulator reports 
exactly how many clock cycles have elapsed to run the 
software

 Cycle accurate simulators are extremely slow: unusable 
for virtual prototyping.

 Reminder: the modern processors are designed to 
execute at least 1 instruction per cycle (sometimes 
more) with architecture support (caches, pipe line, etc). If 
they don’t, it’s because there is a blocking factor…

 Idea: simulate enough of the system with a model to 
compute the blocking factors and evaluate the delays 
with approximation, without really simulating the HW

 Expectation : to get 90% of accuracy with >10 times the 
speed of a CA simulator
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Approximately Timed Simulation

 Example
 Processors have an instruction cache and instruction 

buffer with a complex pre-fetch process. One can 
approximate the pre-fetch by calculating cache 
misses and resulting delays with abstract simulation 
of the cache, the bus and memory.

 Processors have data cache. May be possibility of 
fast calculation of the cache miss with a different 
algorithm than the HW

 Under development
 An abstract cache simulator and an abstract pipe line 

to evaluate the delays created
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We are recruiting intern students

 Motivated students
 Reasonably good english : reading, speaking, writing
 Computer science background: we are looking for 

students having at least one of these competences
 Real time systems, process control, concurrent // computing
 Modeling language experience: UML, SystemC
 Good object oriented C++ programming
 Compiler and operating systems, code generation
 Networking protocols: Ethernet, TCP/IP

 Experience with LINUX and handling software with 
sophisticated control tools: subversion (svn), autoconf, 
automake, make, etc. is a plus

 Write to vania.joloboff@inria.fr



谢谢 , 
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