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The case of embedded systems
• Pioneering  multicore parallel architectures          

(homogeneous or heterogeneous)

• Predictable, intensive data/signal processing applications 
(streaming)

• Co-design issue (architectural design space exploration)

• Statically co-mapping several applications onto joint architecture 
(big issue in automotive/avionic domains) 

• Data transfers and communications become prominent  , must 
be made time-predictable and efficient (overlaps with on-chip 
networks topologies)

 Currently, compilation far from automatic (user directives) 

Need for explicit detailed architecture model
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Main objective of current talk

• Our goal: 
study how existing and emerging formal models and methods 

from theoretical computer science can be used to
– Represent the models
– Specify, and in some cases even solve the  optimized 

mapping construction issue
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Typical embedded architecture

• Multi-, or even many-core in the future.
• Mix or generic CPUs and specific processors (GPUs, FPGAs, 

DSPs)
• Local memory (sometimes L1 caches) and global one.
• Power management for energy saving (battery life)
• Extra functional requirements
• Predicatble architecture ? (accurate WCET approx.)
• Growing importance of communication costs over computation 

ones
Currently such systems too often compute fast, then wait  for so 

long the next available data, wasting power. 
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Target architecture (example)
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Our case: multicore (homo/heterogeneous) 
execution platforms

Architecture = Network of Processors

What kind(s) of Application models

???
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Typical embedded application
• Individual components:
– Intensive data/signal processing algorithms (FFT, JPEG, 

MPEG, GSM, LTE,…), filters

 Nested loop programs (with fixed bounds)
• Composition: 
– Streaming, pipelining, concurrent 

 Dataflow process networks
• Operational modes
– Finite-state control-flow 
– Interrupts, context switches and logical time ordering as 

programming constructs

 Synchronous languages
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based on  strong theories, developed partly at INRIA for 
the last thirty years

Architecture = Network of Processors

Synchronous programming
Actually polychronous/multiclock
Esterel / Signal / Lustre languages
Reactive Real-Time  (near circuits)

Process Networks
data-flow models (DF domains)
Kahn PNs, Petri Net subclasses
Static scheduling from untimed

Nested loop programs
w/ data-independent bounds
Polyhedra techniques
Compiler optimization
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Meeting points
• Nested loops programs implicitly assume a shared memory, loop 

transformation allow to extract parallelism (dopar/forall loops 
instead of doseq/for loops)

• Transformations to process networks need to optimize 
(distributed) memory transfert

• Process networks a genuine place of study for static regular 
scheduling and routing

• Explicit schedules are part of synchronous language modeling 
(also: nested loop programs refer to multidimensional logical time)

• Note: all these theories produce best results in the (theorerical) 
regular/rational domain:
– Fixed (affine bounds for nested loops)
– Static schedules and regular graph shape for process networks
– Finite-state control and clock calculus for synchronous languages
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Model-based design flow
alternative to v-cycle
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What models ?

Formal models
Formal methods Programming models

Truly: coding style

Engineering models
Design flow, specs
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What models ?

Formal models
Formal methods Programming models

Truly: coding style

Engineering models
Design flow, specs

Specific aspects
Dedicated  analysis
Efficient algorithmic issues

Integration + translations
Complete design flow
Requirements  Specs  Integration  tests&verif
Generic aspects

Implementation or 
simulation (distinct aims)
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Models or code ?

Formal models
Formal methods Programming models

Truly: coding style

From models to code :
High-level modeling, synthesis, simulation as executable specifications, 
inclusion of non-functional checks “at runtime”  Ex: SystemC

From code to models :
Low-level modeling (intermediate compilation formats), 
operational semantics, interpretation of specific  features 
Ex: OpenMP, OpenCL
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Formal models methods, and tools 

Process algebras
(rather state-based, action-labeled) 

• CCS, CSP, Lotos, …, Promela

Process networks
(rather activity-based, data-flows)

• Petri, Kahn PNs, SDF,…

Set/Logic theory
(temporal behav encoding) 

• B method, TLA+, COQ, …

Model-checking + exhaustive verification

Property-checking + theorem proving

Timed models

• Timed, Hybrid automata
Stochastic/probabilistic models

• Markov chains, Queuing theories…
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Combining modern disciplines from 
Theoretical Computer Science

• Model-Based Engineering
• Concurrency Theory
• Scheduling Theory
• High-Performance Computing
• Compiler Optimization
• Formal verification, validation, certification
• Performance and Timing Analysis
• Requirement engineering and Non-Functional aspects 

(temperature, power, autonomy, security)
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AFFINE BOUNDS  NESTED LOOPS
Parallelizing compilers on polyhedral data spaces for High-Performance

26



Loop transformations

DO i=1,n

     DO j=1,n

            a(i,j)=a(i-1,j-1) + a(i,j-1)

     END

END 

DOSEQ j=1,n

     DOPAR i=1,n

            a(i,j)=a(i-1,j-1) + a(i,j-1)

     END

END 

• Many kinds of transformations studied to 
exhibit as much parallelism as possible

• Usually rely on Reduced Dependency Graphs 
with proper distance labeling 

• In the end one tries to get increasing control 
variables (i,j,…), ranging in polyhedral spaces, 
so that statements executed simultaneously 
can be defined as slices in hyperplanes 
orthogonal to the progressions (rough sketchy 
idea)

• A scheduling in an integer assignement of a logical 
date to any operation (the corresponding assignment 
then receives a multidimensional schedule, because of 
possible simultaneity)
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Dream (or nightmare?)
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Dream (or nightmare?)
• Greenish nodes provide constants (in parallel at the 

bottom, sequentially on the left)
• Blue nodes each compute 4 values in parallel, shifts the 

last right across the border
Lack of generality certainly when values to be sent across 

cannot be seen as simply buffered.
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Thank you

Questions ?
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