
Formal model engineering for
embedded applications and manycore

architectures

Robert de Simone

INRIA Sophia Méditerranée
AOSTE team

1

Compilation (naive)

Application
(code or model)

Execution
platform

compiler

2

Execution
platform

Execution
platform

Compilation (less naive)

Application
(code or model)

Execution
platform

compile
rDistinct architecture targets…

3

Execution
platform

Execution
platform

Compilation (less naive)

Application
(code or model)

Execution
platform

compile
rDistinct architecture targets…

… require relevant info for
custom compilation
phases

Architecture
model

mapping

4

Execution
platform

Execution
platform

Compilation (less naive)

Application
(code or model)

Execution
platform

compile
r

Application is made to fit exec
platform as described in archi model:
Nature of additional information ?

Architecture
model

Platform-aware
appli refinement

5

mapping

Execution
platform

Execution
platform

Compilation (less naive)

Application
(code or model)

Execution
platform

compile
r

Application is made to fit exec
platform as described in archi model:

Architecture
model

Platform-aware
appli refinement

6

mapping

mapping should provide
•physical allocation/distribution
•temporal scheduling/activation

The case of embedded systems
• Pioneering multicore parallel architectures

(homogeneous or heterogeneous)

• Predictable, intensive data/signal processing applications
(streaming)

• Co-design issue (architectural design space exploration)

• Statically co-mapping several applications onto joint architecture
(big issue in automotive/avionic domains)

• Data transfers and communications become prominent , must
be made time-predictable and efficient (overlaps with on-chip
networks topologies)

 Currently, compilation far from automatic (user directives)

Need for explicit detailed architecture model

7

Main objective of current talk

• Our goal:
study how existing and emerging formal models and methods

from theoretical computer science can be used to
– Represent the models
– Specify, and in some cases even solve the optimized

mapping construction issue

8

Draft example: Mapping

Bus

Proc1

Proc2

9

Mapping = spatial distribution/routing +
temporal scheduling

Bus

Proc1

Proc2

10

Typical embedded architecture

• Multi-, or even many-core in the future.
• Mix or generic CPUs and specific processors (GPUs, FPGAs,

DSPs)
• Local memory (sometimes L1 caches) and global one.
• Power management for energy saving (battery life)
• Extra functional requirements
• Predicatble architecture ? (accurate WCET approx.)
• Growing importance of communication costs over computation

ones
Currently such systems too often compute fast, then wait for so

long the next available data, wasting power.

11

Target architecture (example)

12

Target architecture (example)

13

14

Our case: multicore (homo/heterogeneous)
execution platforms

Architecture = Network of Processors

What kind(s) of Application models

???

15

Typical embedded application
• Individual components:
– Intensive data/signal processing algorithms (FFT, JPEG,

MPEG, GSM, LTE,…), filters

 Nested loop programs (with fixed bounds)
• Composition:
– Streaming, pipelining, concurrent

 Dataflow process networks
• Operational modes
– Finite-state control-flow
– Interrupts, context switches and logical time ordering as

programming constructs

 Synchronous languages
16

based on strong theories, developed partly at INRIA for
the last thirty years

Architecture = Network of Processors

Synchronous programming
Actually polychronous/multiclock
Esterel / Signal / Lustre languages
Reactive Real-Time (near circuits)

Process Networks
data-flow models (DF domains)
Kahn PNs, Petri Net subclasses
Static scheduling from untimed

Nested loop programs
w/ data-independent bounds
Polyhedra techniques
Compiler optimization

17

Meeting points
• Nested loops programs implicitly assume a shared memory, loop

transformation allow to extract parallelism (dopar/forall loops
instead of doseq/for loops)

• Transformations to process networks need to optimize
(distributed) memory transfert

• Process networks a genuine place of study for static regular
scheduling and routing

• Explicit schedules are part of synchronous language modeling
(also: nested loop programs refer to multidimensional logical time)

• Note: all these theories produce best results in the (theorerical)
regular/rational domain:
– Fixed (affine bounds for nested loops)
– Static schedules and regular graph shape for process networks
– Finite-state control and clock calculus for synchronous languages

18

Bibliographic references (partial)
• Nested loops: transformations

– A. Darte, Y. Robert, F. Vivien, loop parallelization algorithms, Compiler Optimizations for Scalable PS, chapter 6, LNCS 1808, 2001

• Nested loops: scheduling
– Paul Feautrier. Some efficient solutions to the affine scheduling problem, I, one dimensional time. Int. I. of Parallel Programming,

21(5):October 1992.
– Paul Feautrier. Some efficient solutions to the affine scheduling problem, II, multidimensional time. Int. I. of Parallel

Programming, 21(6) December 1992.

• Process networks
– Kahn, G. The semantics of a simple language for parallel programming, Proceedings of IFIP Congress 74,1974,
– F. Commoner, Anatol W. Holt, Shimon Even, Amir Pnueli: Marked Directed Graphs. J. Comput. Syst. Sci. 5(5) (1971)
– Lee, E. and Park, T. Dataflow Process Networks. In Proceedings of the IEEE(1995).

• Process network scheduling
– J. Carlier et Ph. Chrétienne, Problèmes d'ordonnancement : modélisation, complexité, algorithmes, Masson, Paris, 1988
– A. Cohen, M. Duranton, Ch. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet, N-synchronous Kahn networks: a relaxed model of

synchrony for real-time systems. (POPL '06)
– Julien Boucaron, Anthony Coadou, Robert de Simone. Formal Modeling of Embedded Systems with Explicit Schedules and Routes.

In Synthesis of Embedded Software: Frameworks and Methodologies for Correctness by Construction, Chapter 2, Springer
Science+Business Media, LLC 2010, July 2010.

• Synchronous languages, scheduling
– Irina M. Smarandache, Paul Le Guernic: Affine Transformations in SIGNAL and Their Application in the Specification and Validation

of Real-Time Systems. ARTS 1997
– Charles André, Julien DeAntoni, Frédéric Mallet, Robert de Simone. The Time Model of Logical Clocks available in the OMG MARTE

profile. In Synthesis of Embedded Software: Frameworks and Methodologies for Correctness by Construction, Chap. 7, Springer
Science+Business Media, LLC 2010, July 2010.

– Dumitru Potop-Butucaru, Robert de Simone, Yves Sorel. From Synchronous Specifications to Statically-Scheduled Hard Real-Time
Implementations. In Synthesis of Embedded Software: Frameworks and Methodologies for Correctness by Construction, Chapter
8, Springer Science+Business Media, LLC 2010, July 2010.

19

Model-based design flow
alternative to v-cycle

20

Application
(code or model)

Requirement
constraints

Architecture
model

Platform/Constraint-aware
appli refinement

What models ?

Formal models
Formal methods Programming models

Truly: coding style

Engineering models
Design flow, specs

21

What models ?

Formal models
Formal methods Programming models

Truly: coding style

Engineering models
Design flow, specs

Specific aspects
Dedicated analysis
Efficient algorithmic issues

Integration + translations
Complete design flow
Requirements  Specs  Integration  tests&verif
Generic aspects

Implementation or
simulation (distinct aims)

22

Models or code ?

Formal models
Formal methods Programming models

Truly: coding style

From models to code :
High-level modeling, synthesis, simulation as executable specifications,
inclusion of non-functional checks “at runtime” Ex: SystemC

From code to models :
Low-level modeling (intermediate compilation formats),
operational semantics, interpretation of specific features
Ex: OpenMP, OpenCL

23

Formal models methods, and tools

Process algebras
(rather state-based, action-labeled)

• CCS, CSP, Lotos, …, Promela

Process networks
(rather activity-based, data-flows)

• Petri, Kahn PNs, SDF,…

Set/Logic theory
(temporal behav encoding)

• B method, TLA+, COQ, …

Model-checking + exhaustive verification

Property-checking + theorem proving

Timed models

• Timed, Hybrid automata
Stochastic/probabilistic models

• Markov chains, Queuing theories…

24

Combining modern disciplines from
Theoretical Computer Science

• Model-Based Engineering
• Concurrency Theory
• Scheduling Theory
• High-Performance Computing
• Compiler Optimization
• Formal verification, validation, certification
• Performance and Timing Analysis
• Requirement engineering and Non-Functional aspects

(temperature, power, autonomy, security)
25

AFFINE BOUNDS NESTED LOOPS
Parallelizing compilers on polyhedral data spaces for High-Performance

26

Loop transformations

DO i=1,n

 DO j=1,n

 a(i,j)=a(i-1,j-1) + a(i,j-1)

 END

END

DOSEQ j=1,n

 DOPAR i=1,n

 a(i,j)=a(i-1,j-1) + a(i,j-1)

 END

END

• Many kinds of transformations studied to
exhibit as much parallelism as possible

• Usually rely on Reduced Dependency Graphs
with proper distance labeling

• In the end one tries to get increasing control
variables (i,j,…), ranging in polyhedral spaces,
so that statements executed simultaneously
can be defined as slices in hyperplanes
orthogonal to the progressions (rough sketchy
idea)

• A scheduling in an integer assignement of a logical
date to any operation (the corresponding assignment
then receives a multidimensional schedule, because of
possible simultaneity)

27From A. Darte, Y. Robert, F. Vivien’reference article

Dream (or nightmare?)

a(i,j)

i

j

a(i,j-1)a(i-1,j-1)

8

4

28

Dream (or nightmare?)
• Greenish nodes provide constants (in parallel at the

bottom, sequentially on the left)
• Blue nodes each compute 4 values in parallel, shifts the

last right across the border
Lack of generality certainly when values to be sent across

cannot be seen as simply buffered.

a(i,j)

i

j

a(i,j-1)a(i-1,j-1)

8

4

a[0,1..4] A[0,5..8]

4

a[1..4,0])
1 1

3 3
4

29

Thank you

Questions ?

30

