Bisimulation for Lattice-Valued Doubly Labeled Transition Systems

Min Zhang
(Joint work with Haiyu Pan, Yixiang Chen)
Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, China
mzhang@sei.ecnu.edu.cn

Introduction & Preliminaries

Formalisms

Evolution of Formalisms

Preliminaries

Lattice-valued Doubly Labeled Transition Systems

L-bisimulation

L-bisimulation

L-bisimilarity

Approximate synchronization

Logical Characterisation of L-bisimulation

L-bisimulation Quotient Transition Systems

Conclusion & Further work

Related work

Formal models: specification of reactive systems

- Transition Systems
- Labeled Transition Systems
- Kripke Structures

Bisimulation: behavior equivalence.

An assumption: The systems are complete and consistent.

Classical (two-valued) transition systems and classical (two-valued) bisimulation work well.

Unfortunately, the available information is incomplete and impreciseness in complex systems.

- Cyber-physical Systems
- Internet of Things
- **.**..

How to represent these systems?...

Evolution of Formal Models

- Nondeterminism
- Probabilistic
- ► Fuzz
- Lattice-valued
- **.**..

Evolution of Bismulation

- \triangleright λ -bisimulation
- (η, δ) -bisimilarity
- Bisimulation for deterministic and nondeterministic fuzzy systems
- Bisimulations (forward, backward, forward-backward and backward-forward) for fuzzy automata
- Lattice-valued simulation based on lattice-valued Kripke structure (latticed-valued structure is a De Morgan algebra)
- **...**

We focus on ...

- Our Formal Model
 - Extend Doubly transition systems to Lattice-valued doubly transition systems
 - Residuated lattices as the structure of truth values of transition system
- Our Bisimulation
 - Extend approximate Bisimulation to lattice-valued bisimulation
 - Lattice-valued version of (η, δ) -bisimulation

Residuated Lattices

Definition

A *residuated lattice* is an algebra $\mathcal{L} = (L, \wedge, \vee, \otimes, \rightarrow, 0, 1)$ in which \wedge, \vee, \otimes , and \rightarrow are binary operators on the set L and

- (1) (L, \wedge, \vee) is a bounded lattice with 0 as smallest and 1 as greatest element,
- (2) \otimes is commutative and associative, with 1 as neutral element, and
- (3) $x \otimes y \leq z$ iff $x \leq y \rightarrow z$ for all x, y and z in L (residuation principle).

We will use the notation $\neg x$ for $x \to 0$ (negation), $x \leftrightarrow y$ for $(x \to y) \land (y \to x)$.

Strong Residuated Lattices

Definition

If \mathcal{L} is a residuated lattice, and satisfies,

$$a \rightarrow b \lor c = (a \rightarrow b) \lor (a \rightarrow c)$$

for any $a,b,c\in L$, then $\mathcal L$ is called a *normal* residuated lattice. If a residuated lattice $\mathcal L$ satisfies , $\neg \neg a = a$ for any $a\in L$, then $\mathcal L$ is called a *regular* residuated lattice.

If a residuated lattice is both normal and regular, we refer it as strong residuated lattice. We use the notations \mathcal{SRL} to denote the class of strong residuated lattices.

Lattice-valued Sets

Definition

- A lattice-valued set (for short, L-set) A on a universe U is a mapping from U to L. The set of all lattice-valued sets on universe U is denoted as L(U).
- ▶ Let *A*, *B* be non-empty sets. A *lattice-valued relation* (for short, *L*-relation) on *A* and *B* is any mapping from *A* × *B* into *L*, that is to say, any *L*-subset of *A* × *B*.

L-equivalence Relations

Definition

A *L*-equivalence relation θ on a set A is a mapping $\theta: A \times A \to L$ satisfying

- (1) reflexive: $\theta(x,x) = 1$, for every $x \in A$;
- (2) symmetric: if $\theta(x,y) = \theta(y,x)$, for all $x,y \in A$;
- (3) transitive: if for all $x, y, z \in A, \theta(x, y) \land \theta(y, z) \le \theta(x, y)$.

LDLTS

Definition

A lattice-valued doubly labeled transition system (for short, LDLTS), \mathcal{M} , is defined as a tuple $(\mathcal{L}, S, S^0, \Sigma, AP, R, \mathcal{V}, \theta)$, where

- (1) $\mathcal{L} = (L, \wedge, \vee, \otimes, \rightarrow, 0, 1)$ is a residuated lattice;
- (2) S is a finite set of states;
- (3) S^0 is an L-set of initial states;
- (4) Σ is a *finite* set of action labels;
- (5) AP is a finite, non-empty set of atomic propositions;
- (6) $R: S \times \Sigma \times S \rightarrow L$ is an *L*-transition relation on *S*;
- (7) V is a valuation function $V: S \times AP \rightarrow L$, assigning a truth value in L to each atomic proposition in every state; and
- (8) θ is an L-equivalence relation on Σ .

LDLTS v.s DLTS

The LDLTS differs from a standard DLTS:

- ▶ the initial state set and transition relation are both *L*-set,
- proposition valuation function maps a state to a mapping from propositions to element of L, and
- ▶ the set of actions Σ is equipped with an L-equivalence relation.

In what follows, unless specially noted, we consider the fixed LDLTSs $\mathcal{M}_i = (\mathcal{L}, S_i, S_i^0, \Sigma, AP, R_i, \mathcal{V}_i, \theta), i = 1, 2$, and assume that all residuated lattices under consideration are *finite*.

L-bisimulation

Definition

Given two LDLTSs \mathcal{M}_i , i=1,2. An L-relation, $\mathcal{R}\in\mathcal{L}(S_1\times S_2)$, is a lattice-valued bisimulation (L-bisimulation) between M_1 and M_2 , if for all $s_1\in S_1, s_2\in S_2$,

$$\mathcal{R}(s_1, s_2) = \mathcal{R}_{AP}(s_1, s_2) \wedge \mathcal{R}_t(s_1, s_2)$$
$$\wedge \bigwedge_{a \in \Sigma} \bigwedge_{s_2' \in S_2} (R_2(s_2, a, s_2') \rightarrow \bigvee_{b \in \Sigma} \bigvee_{s_1' \in S_1} (R_1(s_1, b, s_1') \otimes \theta(a, b) \otimes \mathcal{R}(s_1', s_2')))$$

where

$$\mathcal{R}_{AP}(s_1, s_2) = \bigwedge_{p \in AP} (\mathcal{V}_1(s_1, p) \leftrightarrow \mathcal{V}_2(s_2, p))$$
 $\mathcal{R}_t(s_1, s_2) = \bigwedge_{a \in \Sigma} \bigwedge_{s_1' \in S_1} (R_1(s_1, a, s_1') \rightarrow \bigvee_{b \in \Sigma} \bigvee_{s_2' \in S_2} (R_2(s_2, b, s_2'))$
 $\otimes \theta(a, b) \otimes \mathcal{R}(s_1', s_2'))$

L-bisimilarity

L-bisimilarity, in symbols \sim_L , is defined as

$$\sim_L = \bigcup \{ \mathcal{R} \mid \mathcal{R} \text{ is an L-bisimulation} \}.$$

search for the greatest *L*-bisimulation relation

Algorithm 1: For two LDLTS \mathcal{M}_i , i=1,2, define the following sequence $\{\mathcal{R}_i \mid i \in \mathbb{N}\}$ of L-subsets of $\mathcal{L}(S_1 \times S_2)$: for each state $s_1 \in S_1, s_2 \in S_2$,

$$\mathcal{R}_{0}(s_{1}, s_{2}) = \bigwedge_{p \in AP} (\mathcal{V}_{1}(s_{1}, p) \leftrightarrow \mathcal{V}_{2}(s_{2}, p))$$

$$\mathcal{R}_{i+1}(s_{1}, s_{2}) = \mathcal{R}_{i}(s_{1}, s_{2})$$

$$\wedge \bigwedge_{a \in \Sigma} \bigwedge_{s'_{1} \in S_{1}} (R_{1}(s_{1}, a, s'_{1}) \rightarrow \bigvee_{b \in \Sigma} \bigvee_{s'_{2} \in S_{2}} (R_{2}(s_{2}, b, s'_{2}) \otimes \theta(a, b) \otimes \mathcal{R}_{i}(s'_{1}, s'_{2})))$$

$$\wedge \bigwedge_{a \in \Sigma} \bigwedge_{s'_{2} \in S_{2}} (R_{2}(s_{2}, a, s'_{2}) \rightarrow \bigvee_{b \in \Sigma} \bigvee_{s'_{1} \in S_{1}} (R_{1}(s_{1}, b, s'_{1}) \otimes \theta(a, b) \otimes \mathcal{R}_{i}(s'_{1}, s'_{2}))).$$

Theorem

Let $\{\mathcal{R}_{i\in\mathbf{N}}\}$ be the sequences of L-relation sets defined by Algorithm 1 and \sim_L be the L-bisimilarity relation between \mathcal{M}_1 and \mathcal{M}_2 . Then, the following properties hold: for all $i\geq 0$,

- (1) $\mathcal{R}_{i+1} \subseteq \mathcal{R}_i$;
- (2) $\bigcap_{i \in \mathbb{N}} \mathcal{R}_i$ is an L-bisimulation relation;
- (3) $\bigcap_{i \in \mathbb{N}} \mathcal{R}_i$ is the greatest L-bisimulation relation;
- (4) \sim_L is the greatest L-bisimulation relation, i.e. $\sim_L = \bigcap_{i \in \mathbb{N}} \mathcal{R}_i$.

Composition of LDLTS

Definition

Let \mathcal{M}_i , i=1,2, be two LDL TSs and $AP_1 \cap AP_2 = \emptyset$. The approximate synchronization operator \parallel_{β} , $\beta \in L$, acting on the two systems results in another transition system is the LDLTS

$$\mathcal{M}_1\|_{\beta}\mathcal{M}_2 = (\textit{L}, \textit{S}_1 \times \textit{S}_2, \textit{S}_1^0 \times_{\mathcal{L}} \textit{S}_2^0, \Sigma \times \Sigma, \textit{R}, \textit{AP}_1 \cup \textit{AP}_2, \mathcal{V}, \theta')$$

Note that the composite LDLTS $\mathcal{M} = \mathcal{M}_1 \|_{\beta} \mathcal{M}_2$ is quite different from the LDLTSs $\mathcal{M}_1, \mathcal{M}_2$, in the following sense:

- ► The set of actions of M is also a product of those of M₁ and M₂.
- ▶ The atomic proposition of \mathcal{M} is a union of of those of \mathcal{M}_1 and \mathcal{M}_2 .

The following theorem shows that L-bisimulation is commutative and associative with respect to approximate synchronization operator.

Theorem

Let \mathcal{M}_i , i = 1, 2, 3 be LDLTSs. Given $\beta \in L$. Then

- (1) $\sim_{\alpha,\beta} (\mathcal{M}_1 ||_{\beta} \mathcal{M}_2, \mathcal{M}_2 ||_{\beta} \mathcal{M}_1) = 1;$
- (2) $\sim_L ((\mathcal{M}_1 \|_{\beta} \mathcal{M}_2) \|_{\beta} \mathcal{M}_3, \mathcal{M}_1 \|_{\beta} (\mathcal{M}_2 \|_{\beta} \mathcal{M}_3)) = 1;$

Logical Characterisation of L-bisimulation

Definition

Given a set of propositions AP and of actions Σ . Let Var be a set of variables. The formulas of the lattice-valued μ -calculus ($L\mu$) are generated as follows:

- ▶ if $p \in AP$, then p is a formula.
- A variables x is a formula.
- ▶ if $I \in L$, then I is a formula.
- ▶ if φ_1 and φ_2 are formulas, then $\neg \varphi_1, \varphi_1 \land \varphi_2, \varphi_1 \lor \varphi_2$ are formulas.
- ▶ If $I \in L$, $p \in AP$ and φ is formula, then $p \to I$ and $I \to \varphi$ are formulas.
- ▶ If φ is a formula, $d \in \Sigma$, then $\exists \bigcirc_d \varphi$ and $\forall \bigcirc_d \varphi$ are formulas.
- If $x \in Var$ and φ is a formula, then $\mu x.f$ and $\nu x.f$ are formulas, provided that all occurrences of x within φ fall under an even number of negations in φ .

Definition

The truth value of a formula φ of $L\mu$ in a state s of an LDLTS \mathcal{M} and an interpretation ρ , written $\llbracket \varphi \rrbracket_{\rho}^{\mathcal{M}}(s)$, is defined inductively as follows: \mathcal{L} is a strong residuated lattice. The truth value of an $L\mu$ formula φ in an LDLTS \mathcal{M} , denoted

$$\llbracket \varphi
rbracket^{\mathcal{M}}_{
ho} = igwedge_{s \in S} (S^0(s)
ightarrow \llbracket arphi
rbracket^{\mathcal{M}}_{
ho}(s)).$$

- A variable x is bound in φ if it is in the scope of a quantifier μx or νx ; otherwise, it is called free. A formula is closed if all variables are bound.
- ▶ If φ is closed, we write $\llbracket \varphi \rrbracket^{\mathcal{M}}$ for $\llbracket \varphi \rrbracket^{\mathcal{M}}_{\rho}$.
- ▶ We also denote by *LHML* the subsets of formulas that do not contain variables *Var*, fixpoints operators, negation operator and implication operators.

The link between L-(bi)simulation and our $L\mu$ semantics for LDLTSs is as follows:

Theorem

Let \mathcal{M}_i , i=1,2, be two LDLTSs, $\mathcal{R} \in \mathcal{L}(S_1 \times S_2)$ be an L-relation. For all states $s_1 \in S_1$ and $s_2 \in S_2$ and all L μ closed formulas φ , the following hold.

- (1) If \mathcal{R} is an L-bisimulation relation, then $\mathcal{R}(s_1, s_2) \leq \llbracket \varphi \rrbracket^{\mathcal{M}_2}(s_2) \leftrightarrow \llbracket \varphi \rrbracket^{\mathcal{M}_1}(s_1)$.
- (2) $\sim_L (\mathcal{M}_1, \mathcal{M}_2) \leq \llbracket \varphi \rrbracket^{\mathcal{M}_2} \leftrightarrow \llbracket \varphi \rrbracket^{\mathcal{M}_1}.$

For $ops \subseteq \{\neg, \mu, \nu\}$, we denote by $L\mu \setminus ops$ the set of formulas that do not employ the operators in ops. The following theorem identifies the fragment of the logics that suffices for characterizing the L-bisimulation.

Theorem

Let \mathcal{M}_i be two LDLTSs, for every $s_1 \in S_1, s_2 \in S_2$, then There exists a formula $\varphi \in L\mu \setminus \{\neg, \mu, \nu\}$ such that $[\![\varphi]\!]_{\rho}^{\mathcal{M}_2}(s_2) \leq (s_1 \sim_L s_2)$.

L-bisimulation Quotient Transition Systems

Definition

Let $R \in \mathcal{L}(X \times Y)$. The relation $R^{\exists\exists}$, $R^{\forall\forall} \in \mathcal{L}(\mathcal{L}(X) \times \mathcal{L}(Y))$ are defined as follows, for every $A \in \mathcal{L}(X)$, $B \in \mathcal{L}(Y)$,

$$R^{\exists\exists}(A,B) = \bigvee_{x \in X} \bigvee_{y \in Y} (A(x) \otimes B(y) \otimes R(x,y)),$$

$$R^{\forall\forall}(A,B) = \bigwedge_{x \in X} (A(x) \to \bigwedge_{y \in Y} (B(y) \otimes R(x,y)))$$

For notation ease, we write $R_a(s, t)$ for R(s, a, t).

Definition

For a given LDLTS $\mathcal M$ and its L-bisimulation \sim_L . The L-bisimulation quotient transition system $\mathcal M/\sim_L$ is defined by

$$\mathcal{M}/\sim_L = (L,S/\sim_L,S^0/\sim_L,\Sigma,AP,R_u,R_o,\mathcal{V}_u,\mathcal{V}_o,\theta),$$

where

- ▶ $S/\sim_L = \{[s] \mid s \in S\}$ with $[s](t) = (s \sim_L t)$
- ▶ for every $[s] \in S/\sim_L$, $S^0/\sim_L ([s]) = S^0(s)$.
- ▶ the transition relations R_u and R_o are defined as: for every $[s], [t] \in S/\sim_L$,

$$R_u([s], a, [t]) = R_a^{\exists\exists}([s], [t]),$$

 $R_o([s], a, [t]) = R_a^{\forall\forall}([s], [t]).$

▶ The proposition interpretation function \mathcal{V}_u and \mathcal{V}_o is defined as, for every state $[s] \in S/\sim_L$ and atomic proposition $p \in AP$,

$$\mathcal{V}_u([s], p) = \bigvee_{s_1 \in S} ([s](s_1) \otimes \mathcal{V}(s_1, p)),$$

 $\mathcal{V}_o([s], p) = \bigwedge_{s_1 \in S} ([s](s_1) \to \mathcal{V}(s_1, p)).$

In the sequel, \mathcal{M}/\sim_L is referred to the L-bisimulation quotient of \mathcal{M} . For the sake of simplicity, we write \mathcal{M}/\sim_L (resp. S/\sim_L) instead of \mathcal{M}/\sim (resp. S/\sim).

Theorem

The L-bisimulation quotient transition system defined above is consistent, i.e., for every $[s], [t] \in S/\sim, p \in AP, a \in \Sigma$, the following assertion holds.

$$R_o([s], a, [t]) \le R(s, a, t) \le R_u([s], a, [t])$$

$$\mathcal{V}_o([s], p) \le \mathcal{V}(s, p) \le \mathcal{V}_u([s], p)$$

Definition

Given an L-bisimulation quotient transition \mathcal{M}/\sim . The over-approximate semantics and under-approximate semantics of LHML are given by the function $\llbracket \cdot \rrbracket_e^{\mathcal{M}/\sim}([s])(e=u,o)$, which for each formula φ of LHML, a model \mathcal{M}/\sim , a state [s] in \mathcal{M}/\sim , returns the value of φ at the state [s] of the model \mathcal{M}/\sim , defined as follows:

$$\llbracket I \rrbracket_{e}^{\mathcal{M}/\sim}([s]) = I$$

$$\llbracket p \rrbracket_{e}^{\mathcal{M}/\sim}([s]) = \begin{cases} \mathcal{V}_{u}([s], p) & \text{if } e = u \\ \mathcal{V}_{o}([s], p) & \text{if } e = o \end{cases}$$

$$\llbracket \varphi_{1} \vee \varphi_{2} \rrbracket_{e}^{\mathcal{M}/\sim}([s]) = \begin{cases} \llbracket \varphi_{1} \rrbracket_{u}^{\mathcal{M}/\sim}([s]) \vee \llbracket \varphi_{2} \rrbracket_{u}^{\mathcal{M}/\sim}([s]) & \text{if } e = u \\ \llbracket \varphi_{1} \rrbracket_{o}^{\mathcal{M}/\sim}([s]) \vee \llbracket \varphi_{2} \rrbracket_{o}^{\mathcal{M}/\sim}([s]) & \text{if } e = o \end{cases}$$

$$\llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket_{e}^{\mathcal{M}/\sim}([s]) = \begin{cases} \llbracket \varphi_{1} \rrbracket_{u}^{\mathcal{M}/\sim}([s]) \wedge \llbracket \varphi_{2} \rrbracket_{u}^{\mathcal{M}/\sim}([s]) & \text{if } e = u \\ \llbracket \varphi_{1} \rrbracket_{o}^{\mathcal{M}/\sim}([s]) \wedge \llbracket \varphi_{2} \rrbracket_{o}^{\mathcal{M}/\sim}([s]) & \text{if } e = o \end{cases}$$

$$\mathbb{I} \exists \bigcirc_{d} \varphi \mathbb{I}_{e}^{\mathcal{M}/\sim}([s]) = \begin{cases}
\bigvee_{[s'] \in S/\sim a \in \Sigma} (R_{u}([s], a, [s']) \otimes \\
\theta(a, d) \otimes \mathbb{I}_{\varphi} \mathbb{I}_{u}^{\mathcal{M}/\sim}([s'])) & \text{if } e = u \\
\bigvee_{[s'] \in S/\sim a \in \Sigma} (R_{o}([s], a, [s']) \otimes \\
\theta(a, d) \otimes \mathbb{I}_{\varphi} \mathbb{I}_{o}^{\mathcal{M}/\sim}([s'])) & \text{if } e = o
\end{cases}$$

$$\mathbb{I} \forall \bigcirc_{d} \varphi \mathbb{I}_{e}^{\mathcal{M}/\sim}([s]) = \begin{cases}
\bigwedge_{[s'] \in S/\sim a \in \Sigma} (R_{o}([s], a, [s']) \otimes \\
\theta(a, d) \to \mathbb{I}_{\varphi} \mathbb{I}_{u}^{\mathcal{M}/\sim}([s'])) & \text{if } e = u \\
\bigwedge_{[s'] \in S/\sim a \in \Sigma} (R_{u}([s], a, [s']) \otimes \\
\theta(a, d) \to \mathbb{I}_{\varphi} \mathbb{I}_{o}^{\mathcal{M}/\sim}([s'])) & \text{if } e = o
\end{cases}$$

Theorem

Given an LDLTS $\mathcal M$ and its L-bisimulation quotient transition system $\mathcal M/\sim$, for any formula φ in LHML,

$$\llbracket \varphi \rrbracket_o^{\mathcal{M}/\sim}([s]_\sim) \leq \llbracket \varphi \rrbracket^{\mathcal{M}}(s) \leq \llbracket \varphi \rrbracket_u^{\mathcal{M}/\sim}([s]_\sim).$$

Theorem

Assume $\mathcal{L} \in \mathcal{SRL}$. Let φ be a formula of LHML, $[s]/\sim$ a state of \mathcal{M}/\sim . Given $[\![\varphi]\!]_o^{\mathcal{M}/\sim}([s]_\sim)$, $[\![\varphi]\!]_u^{\mathcal{M}/\sim}([s]_\sim)$, the for any $t\in S$, we have

$$\llbracket \varphi
rbracket^{\mathcal{M}/\sim}_o(\llbracket s
rbracket_\sim) \otimes (s \sim_L t) \leq \llbracket \varphi
rbracket^{\mathcal{M}}_o(t) \leq (s \sim_L t) o \llbracket \varphi
rbracket^{\mathcal{M}/\sim}_u(\llbracket s
rbracket_\sim).$$

Our Contribution

- A general Model–Lattice-valued Double Transition Systems(Residuated lattice)
- ▶ A general approximate equivalence—L-bisimulation(L-equivalence relation)
- ► A useful lift–*L*-bisimulation quotient transition systems

Ongoing and Future Consideration

- ► Extend trace equivalence to lattice-valued setting, give its logical analysis, analysis its robust properties of lattice-valued trace equivalence. (Finished)
- Translation of many kind of lattice-valued transition systems (LKS,LTS,LDLTS): preservation of Lattice-bisimulation and Lattice-valued Trace equivalence, lattice-valued temporal logic. (Partly Finished)
- Generalize LDLTSs to interval-valued residuated lattice setting, obtain more general model
- ► To model check based on LDLTSs

References

- D. Dams, R. Gerth, O. Grumberg. Abstract interpretation of reactive systems, ACM Transactions on Programming Languages and Systems 19(2) (1997) 253-291.
- M. Chechik, B. Devereux, S. Easterbrook, A. Gurfinkel, Multi-valued symbolic model-checking, ACM Transactions on Software Engineering and Methodology 12(4) (2003) 1-38.
- B. Van Gasse, C. Cornelis, G. Deschrijver, E.E. Kerre, Triangle algebras: a formal logic approach to interval-valued residuated lattices, Fuzzy Sets and Systems 159 (2008) 1042-1060.
- A.A. Julius, A. D'Innocenzo, M.D. DiBenedetto, G.J. Pappas, Approximate equivalence and synchronization of metric transition systems, Systems & Control Letters 58(2009)94-101.
- 5. D. W.Pei, The characterization of residuated lattices and regular residuated lattices, Acta Mathematica Sinica, Chinese Series 45(2)(2002) 271-278(in Chinese).

Thank you! & Questions?