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Formal models: specification of reactive systems

I Transition Systems

I Labeled Transition Systems

I Kripke Structures

I ...

Bisimulation: behavior equivalence.



An assumption: The systems are complete and consistent.

Classical (two-valued) transition systems and classical (two-valued)
bisimulation work well.



Unfortunately, the available information is incomplete and
impreciseness in complex systems.

I Cyber-physical Systems

I Internet of Things

I ...

How to represent these systems?...



Evolution of Formal Models

I Nondeterminism

I Probabilistic

I Fuzz

I Lattice-valued

I ...



Evolution of Bismulation

I λ-bisimulation

I (η, δ)-bisimilarity

I Bisimulation for deterministic and nondeterministic fuzzy
systems

I Bisimulations (forward, backward, forward-backward and
backward-forward) for fuzzy automata

I Lattice-valued simulation based on lattice-valued Kripke
structure (latticed-valued structure is a De Morgan algebra)

I ...



We focus on ...

I Our Formal Model
I Extend Doubly transition systems to Lattice-valued doubly

transition systems
I Residuated lattices as the structure of truth values of

transition system

I Our Bisimulation
I Extend approximate Bisimulation to lattice-valued bisimulation
I Lattice-valued version of (η, δ)-bisimulation



Residuated Lattices

Definition
A residuated lattice is an algebra L = (L,∧,∨,⊗,→, 0, 1) in which
∧,∨,⊗, and → are binary operators on the set L and

(1) (L,∧,∨) is a bounded lattice with 0 as smallest and 1 as
greatest element,

(2) ⊗ is commutative and associative, with 1 as neutral element,
and

(3) x ⊗ y ≤ z iff x ≤ y → z for all x , y and z in L (residuation
principle).

We will use the notation ¬x for x → 0 (negation), x ↔ y for
(x → y) ∧ (y → x).



Strong Residuated Lattices

Definition
If L is a residuated lattice, and satisfies,

a→ b ∨ c = (a→ b) ∨ (a→ c)

for any a, b, c ∈ L, then L is called a normal residuated lattice. If a
residuated lattice L satisfies , ¬¬a = a for any a ∈ L, then L is
called a regular residuated lattice.

If a residuated lattice is both normal and regular, we refer it as
strong residuated lattice. We use the notations SRL to denote the
class of strong residuated lattices.



Lattice-valued Sets

Definition

I A lattice-valued set (for short, L-set) A on a universe U is a
mapping from U to L. The set of all lattice-valued sets on
universe U is denoted as L(U).

I Let A,B be non-empty sets. A lattice-valued relation (for
short, L-relation) on A and B is any mapping from A× B into
L, that is to say, any L-subset of A× B.



L-equivalence Relations

Definition
A L-equivalence relation θ on a set A is a mapping θ : A× A→ L
satisfying

(1) reflexive:θ(x , x) = 1, for every x ∈ A;

(2) symmetric: if θ(x , y) = θ(y , x), for all x , y ∈ A;

(3) transitive: if for all x , y , z ∈ A, θ(x , y) ∧ θ(y , z) ≤ θ(x , y).



LDLTS

Definition
A lattice-valued doubly labeled transition system (for short,
LDLTS), M, is defined as a tuple (L, S ,S0,Σ,AP,R,V, θ), where

(1) L = (L,∧,∨,⊗,→, 0, 1) is a residuated lattice;

(2) S is a finite set of states;

(3) S0 is an L-set of initial states;

(4) Σ is a finite set of action labels;

(5) AP is a finite, non-empty set of atomic propositions;

(6) R : S × Σ× S → L is an L-transition relation on S ;

(7) V is a valuation function V : S × AP → L, assigning a truth
value in L to each atomic proposition in every state; and

(8) θ is an L-equivalence relation on Σ.



LDLTS v.s DLTS

The LDLTS differs from a standard DLTS:

I the initial state set and transition relation are both L-set,

I proposition valuation function maps a state to a mapping
from propositions to element of L, and

I the set of actions Σ is equipped with an L-equivalence
relation.

In what follows, unless specially noted, we consider the fixed
LDLTSs Mi = (L,Si ,S

0
i ,Σ,AP,Ri ,Vi , θ), i = 1, 2, and assume

that all residuated lattices under consideration are finite.



L-bisimulation

Definition
Given two LDLTSs Mi , i = 1, 2. An L-relation, R ∈ L(S1 × S2), is
a lattice-valued bisimulation (L-bisimulation) between M1 and M2,
if for all s1 ∈ S1, s2 ∈ S2,

R(s1, s2) = RAP(s1, s2) ∧Rt(s1, s2)

∧
∧
a∈Σ

∧
s′2∈S2

(R2(s2, a, s
′
2)→

∨
b∈Σ

∨
s′1∈S1

(R1(s1, b, s
′
1)⊗ θ(a, b)⊗R(s ′1, s

′
2)))

where

RAP(s1, s2) =
∧

p∈AP
(V1(s1, p)↔ V2(s2, p))

Rt(s1, s2) =
∧
a∈Σ

∧
s′1∈S1

(R1(s1, a, s
′
1)→

∨
b∈Σ

∨
s′2∈S2

(R2(s2, b, s
′
2)

⊗ θ(a, b)⊗R(s ′1, s
′
2)))



L-bisimilarity

L-bisimilarity, in symbols ∼L, is defined as

∼L=
⋃
{R | R is an L-bisimulation}.



search for the greatest L-bisimulation relation

Algorithm 1: For two LDLTS Mi , i = 1, 2, define the following
sequence {Ri | i ∈ N} of L-subsets of L(S1 × S2): for each state
s1 ∈ S1, s2 ∈ S2,

R0(s1, s2) =
∧

p∈AP
(V1(s1, p)↔ V2(s2, p))

Ri+1(s1, s2) = Ri (s1, s2)

∧
∧
a∈Σ

∧
s′1∈S1

(R1(s1, a, s
′
1)→

∨
b∈Σ

∨
s′2∈S2

(R2(s2, b, s
′
2)⊗ θ(a, b)⊗Ri (s ′1, s

′
2)))

∧
∧
a∈Σ

∧
s′2∈S2

(R2(s2, a, s
′
2)→

∨
b∈Σ

∨
s′1∈S1

(R1(s1, b, s
′
1)⊗ θ(a, b)⊗Ri (s ′1, s

′
2))).



Theorem
Let {Ri∈N} be the sequences of L-relation sets defined by
Algorithm 1 and ∼L be the L-bisimilarity relation between M1 and
M2. Then, the following properties hold: for all i ≥ 0,

(1) Ri+1 ⊆ Ri ;

(2)
⋂
i∈N
Ri is an L-bisimulation relation;

(3)
⋂
i∈N
Ri is the greatest L-bisimulation relation;

(4) ∼L is the greatest L-bisimulation relation, i.e. ∼L=
⋂
i∈N
Ri .



Composition of LDLTS

Definition
Let Mi , i = 1, 2, be two LDL TSs and AP1 ∩ AP2 = ∅. The
approximate synchronization operator ‖β, β ∈ L, acting on the two
systems results in another transition system is the LDLTS

M1‖βM2 = (L, S1 × S2,S
0
1 ×L S0

2 ,Σ× Σ,R,AP1 ∪ AP2,V, θ′)



Note that the composite LDLTS M =M1‖βM2 is quite different
from the LDLTSs M1,M2, in the following sense:

I The set of actions of M is also a product of those of M1 and
M2.

I The atomic proposition of M is a union of of those of M1

and M2.



The following theorem shows that L-bisimulation is commutative
and associative with respect to approximate synchronization
operator.

Theorem
Let Mi , i = 1, 2, 3 be LDLTSs. Given β ∈ L. Then

(1) ∼α,β (M1‖βM2,M2‖βM1) = 1;

(2) ∼L ((M1‖βM2)‖βM3,M1‖β(M2‖βM3)) = 1;



Logical Characterisation of L-bisimulation

Definition
Given a set of propositions AP and of actions Σ. Let Var be a set
of variables. The formulas of the lattice-valued µ-calculus ( Lµ)
are generated as follows:

I if p ∈ AP, then p is a formula.

I A variables x is a formula.

I if l ∈ L, then l is a formula.

I if ϕ1 and ϕ2 are formulas, then ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 are
formulas.

I If l ∈ L, p ∈ AP and ϕ is formula, then p → l and l → ϕ are
formulas.

I If ϕ is a formula, d ∈ Σ, then ∃©d ϕ and ∀©d ϕ are
formulas.

I If x ∈ Var and ϕ is a formula, then µx .f and νx .f are
formulas, provided that all occurrences of x within ϕ fall
under an even number of negations in ϕ.



Definition
The truth value of a formula ϕ of Lµ in a state s of an LDLTS M
and an interpretation ρ, written [[ϕ]]Mρ (s), is defined inductively as
follows: L is a strong residuated lattice. The truth value of an Lµ
formula ϕ in an LDLTS M, denoted

[[ϕ]]Mρ =
∧
s∈S

(S0(s)→ [[ϕ]]Mρ (s)).



I A variable x is bound in ϕ if it is in the scope of a quantifier
µx or νx ; otherwise, it is called free. A formula is closed if all
variables are bound.

I If ϕ is closed, we write [[ϕ]]M for [[ϕ]]Mρ .

I We also denote by LHML the subsets of formulas that do not
contain variables Var , fixpoints operators, negation operator
and implication operators.



The link between L-(bi)simulation and our Lµ semantics for
LDLTSs is as follows:

Theorem
Let Mi , i = 1, 2, be two LDLTSs, R ∈ L(S1 × S2) be an
L-relation. For all states s1 ∈ S1 and s2 ∈ S2 and all Lµ closed
formulas ϕ, the following hold.

(1) If R is an L-bisimulation relation, then
R(s1, s2) ≤ [[ϕ]]M2(s2)↔ [[ϕ]]M1(s1).

(2) ∼L (M1,M2) ≤ [[ϕ]]M2 ↔ [[ϕ]]M1 .



For ops ⊆ {¬, µ, ν}, we denote by Lµ\ops the set of formulas that
do not employ the operators in ops. The following theorem
identifies the fragment of the logics that suffices for characterizing
the L-bisimulation.

Theorem
Let Mi be two LDLTSs, for every s1 ∈ S1, s2 ∈ S2, then There
exists a formula ϕ ∈ Lµ\{¬, µ, ν} such that
[[ϕ]]M2

ρ (s2) ≤ (s1 ∼L s2).



L-bisimulation Quotient Transition Systems

Definition
Let R ∈ L(X × Y ). The relation R∃∃,R∀∀ ∈ L(L(X )× L(Y )) are
defined as follows, for every A ∈ L(X ),B ∈ L(Y ),

R∃∃(A,B) =
∨
x∈X

∨
y∈Y

(A(x)⊗ B(y)⊗ R(x , y)),

R∀∀(A,B) =
∧
x∈X

(A(x)→
∧
y∈Y

(B(y)⊗ R(x , y)))

For notation ease, we write Ra(s, t) for R(s, a, t).



Definition
For a given LDLTS M and its L-bisimulation ∼L. The
L-bisimulation quotient transition system M/ ∼L is defined by

M/ ∼L= (L, S/ ∼L, S
0/ ∼L,Σ,AP,Ru,Ro ,Vu,Vo , θ),



where

I S/ ∼L= {[s] | s ∈ S} with [s](t) = (s ∼L t)

I for every [s] ∈ S/ ∼L, S0/ ∼L ([s]) = S0(s).

I the transition relations Ru and Ro are defined as: for every
[s], [t] ∈ S/ ∼L,

Ru([s], a, [t]) = R∃∃a ([s], [t]),

Ro([s], a, [t]) = R∀∀a ([s], [t]).

I The proposition interpretation function Vu and Vo is defined
as, for every state [s] ∈ S/ ∼L and atomic proposition
p ∈ AP,

Vu([s], p) =
∨
s1∈S

([s](s1)⊗ V(s1, p)),

Vo([s], p) =
∧
s1∈S

([s](s1)→ V(s1, p)).



In the sequel, M/ ∼L is referred to the L-bisimulation quotient of
M. For the sake of simplicity, we write M/ ∼L (resp. S/ ∼L)
instead of M/ ∼ (resp. S/ ∼).

Theorem
The L-bisimulation quotient transition system defined above is
consistent, i.e., for every [s], [t] ∈ S/ ∼, p ∈ AP, a ∈ Σ, the
following assertion holds.

Ro([s], a, [t]) ≤ R(s, a, t) ≤ Ru([s], a, [t])

Vo([s], p) ≤ V(s, p) ≤ Vu([s], p)



Definition
Given an L-bisimulation quotient transition M/ ∼.The
over-approximate semantics and under-approximate semantics of

LHML are given by the function [[·]]M/∼
e ([s])(e = u, o), which for

each formula ϕ of LHML, a model M/ ∼, a state [s] in M/ ∼,
returns the value of ϕ at the state [s] of the model M/ ∼ ,
defined as follows:



[[l ]]
M/∼
e ([s]) =l

[[p]]
M/∼
e ([s]) =

{
Vu([s], p) if e = u

Vo([s], p) if e = o

[[ϕ1 ∨ ϕ2]]
M/∼
e ([s]) =

{
[[ϕ1]]

M/∼
u ([s]) ∨ [[ϕ2]]

M/∼
u ([s]) if e = u

[[ϕ1]]
M/∼
o ([s]) ∨ [[ϕ2]]

M/∼
o ([s]) if e = o

[[ϕ1 ∧ ϕ2]]
M/∼
e ([s]) =

{
[[ϕ1]]

M/∼
u ([s]) ∧ [[ϕ2]]

M/∼
u ([s]) if e = u

[[ϕ1]]
M/∼
o ([s]) ∧ [[ϕ2]]

M/∼
o ([s]) if e = o



[[∃©d ϕ]]
M/∼
e ([s]) =



∨
[s′]∈S/∼

∨
a∈Σ

(Ru([s], a, [s ′])⊗

θ(a, d)⊗ [[ϕ]]
M/∼
u ([s ′])) if e = u∨

[s′]∈S/∼

∨
a∈Σ

(Ro([s], a, [s ′])⊗

θ(a, d)⊗ [[ϕ]]
M/∼
o ([s ′])) if e = o

[[∀©d ϕ]]
M/∼
e ([s]) =



∧
[s′]∈S/∼

∧
a∈Σ

(Ro([s], a, [s ′])⊗

θ(a, d)→ [[ϕ]]
M/∼
u ([s ′])) if e = u∧

[s′]∈S/∼

∧
a∈Σ

(Ru([s], a, [s ′])⊗

θ(a, d)→ [[ϕ]]
M/∼
o ([s ′])) if e = o



Theorem
Given an LDLTS M and its L-bisimulation quotient transition
system M/ ∼ , for any formula ϕ in LHML,

[[ϕ]]
M/∼
o ([s]∼) ≤ [[ϕ]]M(s) ≤ [[ϕ]]

M/∼
u ([s]∼).



Theorem
Assume L ∈ SRL. Let ϕ be a formula of LHML, [s]/ ∼ a state of

M/ ∼. Given [[ϕ]]
M/∼
o ([s]∼), [[ϕ]]

M/∼
u ([s]∼), the for any t ∈ S, we

have

[[ϕ]]
M/∼
o ([s]∼)⊗ (s ∼L t) ≤ [[ϕ]]M(t) ≤ (s ∼L t)→ [[ϕ]]

M/∼
u ([s]∼).



Our Contribution

I A general Model–Lattice-valued Double Transition
Systems(Residuated lattice)

I A general approximate
equivalence–L-bisimulation(L-equivalence relation )

I A useful lift–L-bisimulation quotient transition systems



Ongoing and Future Consideration

I Extend trace equivalence to lattice-valued setting, give its
logical analysis, analysis its robust properties of lattice-valued
trace equivalence. (Finished)

I Translation of many kind of lattice-valued transition systems
(LKS,LTS,LDLTS): preservation of Lattice-bisimulation and
Lattice-valued Trace equivalence, lattice-valued temporal
logic. (Partly Finished)

I Generalize LDLTSs to interval-valued residuated lattice
setting, obtain more general model

I To model check based on LDLTSs
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