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Formal models: specification of reactive systems

» Transition Systems

v

Labeled Transition Systems

v

Kripke Structures

> ...

Bisimulation: behavior equivalence.



An assumption: The systems are complete and consistent.

Classical (two-valued) transition systems and classical (two-valued)
bisimulation work well.



Unfortunately, the available information is incomplete and
impreciseness in complex systems.

» Cyber-physical Systems
> Internet of Things

> ...

How to represent these systems?...



Evolution of Formal Models

Nondeterminism
Probabilistic

v

v

» Fuzz

Lattice-valued

v



Evolution of Bismulation

> A-bisimulation

> (n,0)-bisimilarity

» Bisimulation for deterministic and nondeterministic fuzzy
systems

» Bisimulations (forward, backward, forward-backward and
backward-forward) for fuzzy automata

» Lattice-valued simulation based on lattice-valued Kripke
structure (latticed-valued structure is a De Morgan algebra)



We focus on ...

» Our Formal Model
» Extend Doubly transition systems to Lattice-valued doubly
transition systems
» Residuated lattices as the structure of truth values of
transition system
» Our Bisimulation

» Extend approximate Bisimulation to lattice-valued bisimulation
» Lattice-valued version of (7, d)-bisimulation



Residuated Lattices

Definition

A residuated lattice is an algebra £ = (L, A, V,®,—,0,1) in which

A,V,®, and — are binary operators on the set L and

(1) (L,A,V) is a bounded lattice with 0 as smallest and 1 as
greatest element,

(2) ® is commutative and associative, with 1 as neutral element,
and

(3) x®y <ziffx<y— zforall x,y and z in L (residuation
principle).

We will use the notation —x for x — 0 (negation), x <> y for
(x = y)A(y = x).



Strong Residuated Lattices

Definition
If £ is a residuated lattice, and satisfies,

a—bVec=(a—b)VvV(a—c)

for any a,b,c € L, then L is called a normal residuated lattice. If a
residuated lattice £ satisfies , =—a = a for any a € L, then L is
called a regular residuated lattice.

If a residuated lattice is both normal and regular, we refer it as
strong residuated lattice. We use the notations SRL to denote the
class of strong residuated lattices.



Lattice-valued Sets

Definition

> A lattice-valued set (for short, L-set) A on a universe U is a
mapping from U to L. The set of all lattice-valued sets on
universe U is denoted as L(U).

» Let A, B be non-empty sets. A lattice-valued relation (for
short, L-relation) on A and B is any mapping from A X B into
L, that is to say, any L-subset of A x B.



| -equivalence Relations

Definition

A L-equivalence relation 6 on a set A is a mapping 0 : AX A— L
satisfying

(1) reflexive:0(x,x) =1, for every x € A;

(2) symmetric: if 0(x,y) = 6(y, x), for all x,y € A;

(3) transitive: if for all x,y,z € A,0(x,y) NO(y, z) < 6(x,y).



LDLTS

Definition
A lattice-valued doubly labeled transition system (for short,
LDLTS), M, is defined as a tuple (£,S,S°% ¥, AP, R, V, ), where

(1) L= (L,A,V,®,—,0,1) is a residuated lattice;
2

3) SO is an L-set of initial states;

)
)
4)
)
)
)

S is a finite set of states;

Y is a finite set of action labels;
5
6
7

AP is a finite, non-empty set of atomic propositions;
R:SxX¥X xS — Lisan L-transition relation on S;

(
(
(
(
(
(

V is a valuation function V : S x AP — L, assigning a truth
value in L to each atomic proposition in every state; and

(8) O is an L-equivalence relation on X.



LDLTS v.s DLTS

The LDLTS differs from a standard DLTS:
» the initial state set and transition relation are both L-set,

> proposition valuation function maps a state to a mapping
from propositions to element of L, and

> the set of actions X is equipped with an L-equivalence
relation.

In what follows, unless specially noted, we consider the fixed
LDLTSs M; = (£, S, S, X, AP, R;, V;,0),i = 1,2, and assume
that all residuated lattices under consideration are finite.



L-bisimulation
Definition
Given two LDLTSs M;, i = 1,2. An L-relation, R € L(S51 X S), is
a lattice-valued bisimulation (L-bisimulation) between M; and M,
if for all s; € 51,5 € Sy,
R(s1,52) = Rap(s1,52) ARe(s1,5)
A /\ /\ (R2(527 a, Sé) — \/ \/ (Rl(Sl, bv Si) ® 9(37 b) ® R(Siv Sé)))

acr sleS, beY sieS;

where

Rap(st,52) = [\ (Vils, p) < Va(s2,p))

pEAP
/
(s,92) = N\ N (Rils,a,50) = \/ / (Ras2, b, 55)
acr s;eS; beEY s)eS

® 6(a, b) ® R(s},s3)))



L-bisimilarity

L-bisimilarity, in symbols ~, is defined as

~p= U{R | R is an L-bisimulation}.



search for the greatest L-bisimulation relation

Algorithm 1: For two LDLTS M;,i = 1,2, define the following
sequence {R; | i € N} of L-subsets of £(S1 x Sp): for each state
s1 € 51,5 € 5,

Ro(s1,9) = /\ (Vi(s1, p) < Va(s2,P))
pEAP

Rit1(s1,52) = Ri(s1,52)
A /\ /\ (Ri(s1,a,s)) — \/ \/ (Ra(s2, b, 53) ® 6(a, b) @ Ri(s1,53)))

acr sjeS; beY sles

AN\ N (Ras2,a,85) =\ \/ (Ruls1, b, s1) @ 0(a, b) @ Ri(s], 55)))-

acx 5é€52 bex S{GS].



Theorem

Let {Rien} be the sequences of L-relation sets defined by
Algorithm 1 and ~| be the L-bisimilarity relation between M1 and
M. Then, the following properties hold: for all i > 0,

(1) Rit1 CRi;
(2) (N Ri is an L-bisimulation relation;
ieN
(3) [\ Ri is the greatest L-bisimulation relation;
ieN
(4) ~ Is the greatest L-bisimulation relation, i.e. ~ = (| R;.

ieN



Composition of LDLTS

Definition

Let M;,i =1,2, be two LDL TSs and AP; N AP, = (). The
approximate synchronization operator |3, 5 € L, acting on the two
systems results in another transition system is the LDLTS

MMz = (L, S1 x 2,50 x2 S5, x L, R, AP, U APy, V,¢")



Note that the composite LDLTS M = M ||3pM> is quite different
from the LDLTSs My, M>, in the following sense:

» The set of actions of M is also a product of those of M7 and
M.
» The atomic proposition of M is a union of of those of M;

and MQ.



The following theorem shows that L-bisimulation is commutative
and associative with respect to approximate synchronization
operator.

Theorem
Let M;,i=1,2,3 be LDLTSs. Given 3 € L. Then

(1) ~a,p Mil[pMa2, Mo gpM1) =1,
(2) ~i (MallpM2)[|pMs, Mi|[g(M2] gM3)) = 1;



Logical Characterisation of L-bisimulation

Definition

Given a set of propositions AP and of actions . Let Var be a set
of variables. The formulas of the lattice-valued p-calculus ( Lu)
are generated as follows:

>

>

>

if p € AP, then p is a formula.

A variables x is a formula.

if | € L, then [ is a formula.

if o1 and @ are formulas, then =1, 1 A 2,1 V o are
formulas.

If €L, pe AP and ¢ is formula, then p — [ and | — ¢ are
formulas.

If pis a formula, d € ¥, then 3Og ¢ and V g ¢ are
formulas.

If x € Var and ¢ is a formula, then pux.f and vx.f are
formulas, provided that all occurrences of x within ¢ fall
under an even number of negations in ¢.



Definition

The truth value of a formula ¢ of Lu in a state s of an LDLTS M
and an interpretation p, written [[go]]lf)‘/‘(s), is defined inductively as
follows: L is a strong residuated lattice. The truth value of an Ly
formula ¢ in an LDLTS M, denoted

[l = A\ (S°(s) = [l (s))-

seS



> A variable x is bound in ¢ if it is in the scope of a quantifier
ux or vx; otherwise, it is called free. A formula is closed if all
variables are bound.

> If o is closed, we write [@]M for [[cp]];}’l.

» We also denote by LHML the subsets of formulas that do not
contain variables Var, fixpoints operators, negation operator
and implication operators.



The link between L-(bi)simulation and our Ly semantics for
LDLTSs is as follows:

Theorem
Let M;,i =1,2, be two LDLTSs, R € L(51 x Sz) be an
L-relation. For all states sy € S1 and sy € Sy and all Ly closed
formulas ¢, the following hold.
(1) If R is an L-bisimulation relation, then

R(s1,%) < [¢]"2(s2) ¢ [¢]M (1)-
(2) ~1 (M1, Ma) <[] &[]



For ops C {—, u, v}, we denote by Lu\ops the set of formulas that
do not employ the operators in ops. The following theorem
identifies the fragment of the logics that suffices for characterizing
the L-bisimulation.

Theorem

Let M; be two LDLTSs, for every s; € S1,5 € Sy, then There
exists a formula ¢ € Lp\{—, u, v} such that

[el;2(s2) < (51 ~1 =2).-



L-bisimulation Quotient Transition Systems

Definition
Let R € L(X x Y). The relation RF, R € L(L(X) x L(Y)) are
defined as follows, for every A € L(X),B € L(Y),

RFAB) =\ /(A y) @ R(x,)),
xeX yeY

R™(A.B) = N\ (Ax) = N\ (B(y) @ R(x.)))
xeX yey

For notation ease, we write R,(s, t) for R(s, a, t).



Definition
For a given LDLTS M and its L-bisimulation ~;. The
L-bisimulation quotient transition system M/ ~ is defined by

M/ ~L= (L,S/ NL750/ NvavAP7 RU7R07VU7VO79)7



where
> S/ ~1={[s] | s € S} with [s](t) = (s ~r t)
» for every [s] € S/ ~, S°/ ~ ([s]) = S°(s).
> the transition relations R, and R, are defined as: for every

[s].[t] € S/~

Ru(ls]. &, [t]) = R°([s]. [1]).
Ro([s], a.[t]) = Ry ([s], [t])-

» The proposition interpretation function 1V, and V, is defined
as, for every state [s] € S/ ~ and atomic proposition
p € AP,

Vu(lsl, p) = \/ ([sl(s1) ® V(s1, p)).

s1€ES

Vo([sl,p) = /\ ([sl(s1) = V(s1. p))-

s1€S



In the sequel, M/ ~ is referred to the L-bisimulation quotient of
M. For the sake of simplicity, we write M/ ~; (resp. S/ ~)
instead of M/ ~ (resp. S/ ~).

Theorem

The L-bisimulation quotient transition system defined above is
consistent, i.e., for every [s],[t] € S/ ~,p € AP,a € ¥, the
following assertion holds.

Ro([s], a,[t]) < R(s,a,t) < Ru([s], 3, [t])
Vo(ls], p) < V(s, p) < Vu([s], p)



Definition

Given an L-bisimulation quotient transition M/ ~.The
over-approximate semantics and under-approximate semantics of
LHML are given by the function [-]2/~([s])(e = u, o), which for
each formula ¢ of LHML, a model M/ ~, a state [s] in M/ ~,
returns the value of ¢ at the state [s] of the model M/ ~ |
defined as follows:



2™ (ls]) =1

-0 e

I | 2 (B0 2 Pl ()
o vieale D {[@1] DV el (D
wjm iy - {Borlo(0sD) A T2 (1))
L1 A2l (s]) = {[90 M) A Lo (o]

ife:u
ife:u

ife:o



I3 Oa 1"~ (Is]) =

IV Oa ¢12"~([s]) =

VoV (Ru([s], & [sT)@

[s']€S/~ aex
0(a, d) © [ol0~ ([s])
V.V (Ro(ls],a.[s])

[s’]eS/~ aex
L6(a, d) ® [£] 5 (Is]))
(A A (Ro([s], a,[s])e

[s’]eS/~ aex
6(a, d) — [elu"~ ([s]))

A A(Ru(lsla [sT)e

[s']€S/~ acx

L6(a, d) = [e]5"~([s]))

ife=u

ife=o

ife=u

ife=o



Theorem
Given an LDLTS M and its L-bisimulation quotient transition
system M/ ~ , for any formula ¢ in LHML,

[e15" (Is]~) < [el™(s) < [ela ™ ([s]-).



Theorem
Assume L € SRL. Let ¢ be a formula of LHML, [s]/ ~ a state of

M/ ~. Given [¢]2"~([s]~), [¢]2"~ ([s]~), the for any t € S, we
have

[els" ™ ([s]~) © (s ~1 t) < [elM(2) < (5 ~0 t) = [ela "™ ([s]~)-



Our Contribution

» A general Model-Lattice-valued Double Transition
Systems(Residuated lattice)

> A general approximate
equivalence—L-bisimulation(L-equivalence relation )

» A useful lift—L-bisimulation quotient transition systems



Ongoing and Future Consideration

» Extend trace equivalence to lattice-valued setting, give its
logical analysis, analysis its robust properties of lattice-valued
trace equivalence. (Finished)

» Translation of many kind of lattice-valued transition systems
(LKS,LTS,LDLTS): preservation of Lattice-bisimulation and
Lattice-valued Trace equivalence, lattice-valued temporal
logic. (Partly Finished)

» Generalize LDLTSs to interval-valued residuated lattice
setting, obtain more general model

» To model check based on LDLTSs
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