
ST1/51

JJ
II
J
I

Back

Close

uÀ���Æ(East China Normal University)
URL—http://faxulty.ecnu.edu.cn/chenyixiang

yxchen@sei.ecnu.edu.cn

STeC: A Location-Triggered
Specification Language

Yi-Xiang Chen (�¤�)

Brose Team @ Software Engineering Institute(SEI)
East China Normal University(ECNU)
Shanghai, China

Second DAESD Workshop, March 28, 2012, Sophia-Antipolis, France

ST2/51

JJ
II
J
I

Back

Close

Outlines

• Background and related work

• Agents and Processes

• Syntax of STeC

• Transition Systems

• Operational Semantics

• The Railroad Crossing Issue

• Conclusion and Future Work

ST3/51

JJ
II
J
I

Back

Close

Background and Related Work

• Distributed embedded system: Internet of Things (IoT), Cyber-
Physical Systems (CPS), and Cloud/Grid Computing.

• Formal Method is important to improve the safety and security of
real-time systems, (Heitmeyer 1996)

• To give system developers and customers greater confidence that
real-time systems satisfy their requirements, especially their critical
requirements.

• Adding the time fact or time operator into specification languages
is a typical method for developing the specification of real-time
systems.

ST4/51

JJ
II
J
I

Back

Close

Background and Related Work

• Timed CSP (Reed and Roscoe, 1986): a real-time extension of the
process language CSP by adding a single primitive WAITt.

• Schneider (1995): the operational semantics of timed CSP.

• Davies and Scheneider(1995): gave a brief history of timed CSP.

• Ouaknine and Schneider(2006): reviewed the development of the
process algebra timed CSP.

ST5/51

JJ
II
J
I

Back

Close

Background and Related Work

• Wang Yi(1992): an interleaving model for real-time systems by
adding the temporal, primitive action prefix, µ@t.P to Milner’s
CCS, where t is a time variable.

• Hennessy and Regan(1995): a timed process language for timed
system by introducing a new action δ which is meant to denote
idling until the next clock cycle.

• Rounds and Song (2003): the Φ-calculus—a language for dis-
tributed control of reconfigurable embedded systems by adding ac-
tive environments which flow continuously over time to Milner’s
π-calculus.

• Jacquet and Linden (2009) introduced a timed coordination lan-
guage by adding the notion of duration for which units of time a
token will stay in the dataspace.

ST6/51

JJ
II
J
I

Back

Close

Background and Related Work

• Timed automata (Alur and Dill 1994): to model the behavior of
real time systems over time.

• Fersman et al (2006): used timed automata to describe task arrival
patterns for relaxing the stringent constraints on task arrival times
and to analyze the schedulability of fixed-priority systems.

• Abdulla et al(2010): gave a sampled semantics of times automata
for dense time behavior.

ST7/51

JJ
II
J
I

Back

Close

Background and Related Work

• The railroad crossing: a point at which a railway and a road inter-
sect on the same level.

• In order to avoid collision, a gate is built at the crossing point.

• Safety issue: The gate must be closed when a train passes the
crossing point.

• Formal Methods to specified this issue in terms of timed CSP and
timed automata.

ST8/51

JJ
II
J
I

Back

Close

Background and Related Work

• Roscoe (1985): a CSP solution to the “trains” problem.

• Heitmeyer and Lynch (1994): a solution to the generalized railroad
crossing in terms of timed automata.

• Archer and Heitmeyer(1996): applied the mechanical proof system
PVS to a solution of the Generalized Railroad Crossing (GRC)
problem based on the timed automata.

• Beauquier and Slissenko (1997): a formal analysis of the railroad
crossing problem, to describe semantics of algorithms with contin-
uous time.

• Damm et al (2007): a verification methodology for cooperating
traffic agents and illustrated this approach with a variant of the
European Train Control System (ETCS).

• Mostafa et al(2010): an intelligent railway crossing control system
for multiple tracks that features a controller which receives mes-
sages from incoming and outgoing trains by sensors based on radio.

ST9/51

JJ
II
J
I

Back

Close

The Railway Crossing Issue

We address that both trains and gates are intelligent agents.

• A train has three components: four locations, three actions and
two interactions communicating with gate.

• Gate is also an intelligent agent. It is autonomous (e.g., it opens
and closes it by itself), and communicates with train.

ST10/51

JJ
II
J
I

Back

Close

Our Contribution

• This presentation introduces a spatial-temporal consistence lan-
guage for real-time systems (Shortly, STeC).

– The consistence requires that an agent do its tasks at the re-
quired location or time.

– This language is a location-triggered specification language for
real-time systems.

– The interaction between real-time agents deals with communi-
cations.

ST11/51

JJ
II
J
I

Back

Close

Our Contribution

• STeC looks like an extension of process precess algebra, Hoare’s
CSP and Milner’s CCS in syntax.

– The execution time of actions and states of agents are stressed.

– Two kinds of interrupts- time and interaction interrupts are
considered.

– Following the Dijkstra’s guard style, nondeterministic choice
phase guarded by actions and states is introduced.

– The operational semantics is introduced in the style of Plotkin’s
version.

• Agents as smart objects will specify in terms of the language STeC.

• The railroad crossing problem is specified in terms of this language
STeC, since gate and train are considered as agents.

ST12/51

JJ
II
J
I

Back

Close

Agents and Processes

• Oxford Dictionary of Computing: an agent is an autonomous sys-
tem that receives information from its environment, processes it,
and performs actions on that environment.

• A robot: an example of an agent that perceives its physical envi-
ronment through sensors and acts through effectors.

• Networked Agents: Vehicle network and wireless sensor network
are classical examples of networked agents.

– Cars and sensors are examples of agents that receive information
from other agents by communication mechanism and from its
environments through sensors, processes it and performs actions
by themselves on that environment.

ST13/51

JJ
II
J
I

Back

Close

Agents and Processes

• The networked environment: distributed systems.

– Organization: The process of identifying and managing the
relationships between agents.

– Communication mechanism: The method of describing the
communication protocol between agents.

– Storage method: The approach of how a message is stored
into and extracted from storage space as well as what forms
of messages are stored at. This storage will be denoted as the
notation Σ.

ST14/51

JJ
II
J
I

Back

Close

Agents and Processes

• Agents are smart objects.

– communicating each other and reacting with environment

– processing/computing the information

– taking action and keeping status

• Processes: used to define the behaviours of agents.

• What we do is to develop a specification language to specify and
analyze the behaviour of an agent in a networked environment.

• This language, called STeC, is provided with the triggered location
at which agents stay and with the spatial-temporal consistence for
real-time systems.

– the syntax to specify processes

– the semantics to analyze the meaning of each component and

– the reasoning mechanism to show the evolution of behaviors of
agents.

ST15/51

JJ
II
J
I

Back

Close

Agents and Processes

• Each agent: an intelligent body/system including such parts as
communication, actions and states.

• The communication between agents is provided through operators
of Send and Get which are triggered by locations at which an agent
stays.

• An action: a process of which that agent takes a task. α stands
for actions. The action is considered to have a duration, e.g., run-
ning(3s) means that that agent will run with 3 seconds.

• State of an agent is a form of what that agent appears. β stands
for states. We consider how long a state will keep, e.g., Closed(4s)
means that the state Closed will last 4 seconds.

ST16/51

JJ
II
J
I

Back

Close

Syntax of STeC
we stress two basic concepts: location and time, and a property:

consistence between time and location.

• A location: a physical place or a state of agent for which l stands.

• The time concept: at what time t and with how long it maintains.

• Communication between agents: these commands Send and Get,
triggered by locations

• The notation mG�G′: to denote the message m sent to G′ by agent
G.

• The storage Σ: recording those messages of the form mG�G′. Those
messages disappear as long as they are extracted. In other words,
the messages are used only one time.

ST17/51

JJ
II
J
I

Back

Close

Syntax of STeC
Atomic Commands of Send and Get:

A ::= SendG
(l,t,G′)(m) | GetG(l,t,G′)(m)

• The atomic command SendG
(l,t,G′)(m) defines the process that the

agent G sends a message m (denoted as mG�G′) to the agent G′ at
location l and at time t.

• The command GetG(l,t,G′)(m) means that agent G receives a message
mG′�G from G′ at location l and at time t.

ST18/51

JJ
II
J
I

Back

Close

Syntax of STeC
Each agent may have some actions and states. α stands for actions

and β stands for states.

• The notation α(l,t)(δ) to represent that the action α is executed at
location l and at time t and go on δ unit times

– action closing(Open,12am)(3s): the action closing is executed at
location Open and at time 12am and keep 3 seconds.

• The notation β(l,t)(δ) to represent that at location t and at time t,
the state β lasts δ unit times.

– The state closed(Closed,13pm)(5s): at location Closed and at time
13pm, the states closed keep 5 seconds.

The duration time δ takes the non-negative real numbers as well as
the infinite ∞.

• Statement α(∞): the action α will go on and not stop.

• Statement α(0): the action α does not consume the time.

ST19/51

JJ
II
J
I

Back

Close

Syntax of STeC
This language STeC is of the Dijkstra’s guarded language. The guards
is, denoted as B, defined as follows:

B ::= αG
(l,t)(δ) | βG

(l,t)(δ) | ¬B | B ∧B

The guard B takes the Boolean/truth values: true T and false F .

• If the action α(δ) finishes within the δ unit time then it is true else
false.

• β(δ) is a state which waits with duration of δ unit time. If the
status β keeps δ unit time then it takes the value of truth else the
value of false.

ST20/51

JJ
II
J
I

Back

Close

Syntax of STeC
The syntax of this language STeC is defined in the Backus-Naur Form
as follows. We ignore those superscripts in atomic commands and
actions as well as states without confusion

P ::= Stop(l,t) | Skip(l,t) | Send(l,t,G′)(m) | Get(l,t,G′)(m) |

α(l,t)(δ) | β(l,t)(δ) | P ; P | P || P |

8i∈IBi → Pi | P Dδ P | P D (8i∈IAi → Pi) |

• Stop is a non-terminating idle process.

• Skip terminates immediately with no effect on the process.

• ; is the sequent composition.

• || is the parallel operator. Process P and Q of process P || Q always
execute independently and interact asynchronously through Send-
Get communication.

ST21/51

JJ
II
J
I

Back

Close

Syntax of STeC

P ::= Stop(l,t) | Skip(l,t) | Send(l,t,G′)(m) | Get(l,t,G′)(m) | α(l,t)(δ) | β(l,t)(δ) |

P ; P | P || P | 8i∈IBi → Pi | P Dδ P | P D (8i∈IAi → Pi) |

• Statement 8(i∈I)(Bi → Pi) is a nondeterminstic choice, Bi is a
guard. Only one of these guards Bi is true. Thus, only one of those
processes Pi executes. Its special case is the conditional statement
B → P Else Q, which means if the guard B is true then it behaves
like P else like Q.

• Timeout Events P Dδ Q: initially behaves as P for up to δ time
units and then as Q after δ time units. So, it is interrupted by the
duration time δ.

• The sentence P D (8i∈IAi → Pi) initially proceeds like P and is
interrupted on occurrence of the atomic command Ai and then
process like Pi.

ST22/51

JJ
II
J
I

Back

Close

Syntax of STeC
• Define the phase Wait(l,t)(δ): Stop(l,t)(∞) Dδ Skip(l,t+δ).

• The command Wait(l,t,G)(m) = Stop(l,t)(∞) D (Get(l,t′,G)(m) →
Skip(l,t′+τ(Get))) with t ≤ t′, waiting for the message coming from
agent G at location l and time t.

• The notation P to denote the set of all processes.

• To easily express successful termination, we shall introduce a spe-
cial terminating symbol E for the case that no executable state-
ments exist.

• To meet the intuition, we shall always rewrite precesses of the form
E; P, P ; E and P || E, E || P as P.

• Define the extended set of processes as Pe = P ∪ {E}.
– The structure (Pe, E, ; , ||) is a bimonoid, and more, (Pe, E, ||)

is a commutative monoid.

– E; P = P ; E = P and E; E = E, as well as, E || P = P ||
E = P and E || E = E. Moreover, P || Q = Q || P.

ST23/51

JJ
II
J
I

Back

Close

Execution Time of Processes
The execution time of programs is a basic notion for real-time sys-

tems.We define the concept of execution time, denoted as τ (P), of
process P .

• The execution time of atomic commands Send and Get, denoted
as τ (Send) and τ (Get), are preassigned depended on the commu-
nicative machine.

• Define the execution time τ (B) of a guard B in the following table.

τ (α(δ)) = δ τ (β(δ)) = δ

τ (B1 ∧B2) = τ (B1) + τ (B2) τ (¬B) = τ (B)

ST24/51

JJ
II
J
I

Back

Close

Execution Time of Processes
The execution time τ (P) of process P is defined in the following

table.

τ(Stop) = ∞ τ(Skip) = 0

τ(Send(l,t,G)(m)) = τ(Send) τ(Get(l,t,G)(m)) = τ(Get)

τ(α(l,t)(δ)) = δ τ(β(l,t)(δ)) = δ

τ(P1; P2) = τ(P1) + (P2) τ(P1 || P2) = Max(τ(P1), τ(P2))

τ(8i∈I(Bi → Pi) =
∑

i∈I τ(Bi) + Maxi∈Iτ(Pi) τ(P Bδ Q) = δ + τ(Q)

τ(P B (8i∈IAi → Qi)) = τ(P) + Maxi∈τ(Qi) τ(E) = 0

ST25/51

JJ
II
J
I

Back

Close

Execution Time of Processes
• τ (Stop) = ∞: the process Stop will execute for ever

• τ (Skip) = 0: The execution of Skip does not consume the time.

• τ (Send(l,t,G)(m)) = τ (Send) and τ (Get(l,t,G)(m)) = τ (Get).

• τ (α(l,t)(δ)) = δ and τ (β(l,t)(δ)) = δ: Meeting the intuition.

• τ (P1; P2) = τ (P1) + (P2): Their executions in a sequence.

• τ (P1 || P2) = Max(τ (P1), τ (P2)): The parallel statement termi-
nates only if all sub-statements terminate. So, its time is the max-
imal one.

• τ (8i∈I(Bi → Pi) =
∑

i∈I τ (Bi) + Maxi∈Iτ (Pi): the maximal exe-
cution time and computing truth values of guards needs times.

• τ (P Bδ Q) = δ + τ (Q): P is interrupted by the delay time δ.

• P B (8i∈IAi → Qi): We ignore the execution time of the inter-
rupt command Ai, since the execution time of P covers one of the
interrupt Ai due to their parallel processing.

• τ (E) = 0: E just is a symbol and never executed.

ST26/51

JJ
II
J
I

Back

Close

Execution Time of Processes
We may compute the time of statement Wait. Indeed, we have the
following results.

• τ (Wait(l,t)(δ)) = τ (Stop(l,t) Dδ Skip(l,t+δ)) = δ;

• τ (Wait(l,t,G)(m)) = τ (Stop(l,t) D (Get(l,t′,G)(m) → Skip(l,t′+τ(Get)))) =
τ (Stop) + τ (Get). This time is not known, since we do not know
how long we need wait for the message coming.

ST27/51

JJ
II
J
I

Back

Close

Transition System

• The computation and reasoning in STeC may be modeled by a
transition system written in Plotkin’s style.

• Configurations to be considered consist of a precess or E together
with a multi-set of spatial stores denoting the messages currently
available.

• Define a storage, denoted by Σ, as the set of elements of the form
mG�G′, where mG�G′ is a message that is sent by agent G to agent
G′.

• Notation Σ∗ to denote the family of all finite subsets of Σ which σ
will stand for and be called as a store.

• All agents will be concurrent on that storage.

• Only statements Send and Get change the storage. Indeed, Send
will add messages into and the Get removes messages from the
storage.

ST28/51

JJ
II
J
I

Back

Close

Transition System

• Define the concept of environment as the binary (σ, u), where σ ∈
Σ∗ and u is a glob clock of that distributed agent system

– taking its value from the Time-the set of the non-negative real
numbers [o, +∞) and the infinite ∞.

– The value ∞ denotes the infinite duration.

• The notation E will denote the set of all environments. That is,
E = Σ∗ × Time.

ST29/51

JJ
II
J
I

Back

Close

Transition System
Based on the environment (σ, u), we define the truth value, T (B), of
a guard B as a function from the environment set to the truth value
{T, F} as follows.

• T (αG
(l,t)(δ)(σ, u)) = T if and only if the agent G, at location l and

time t, completes its action α in δ unit times.

• T (βG
(l,t)(δ)(σ, u)) = T if and only if the agent G, at location l and

time t, maintains its state β with δ unit times.

• T (¬B)(σ, u) = T if and only if T (B)(σ, u) = F ;

• T (B1∧B2)(σ, u) = T if and only if T (B1)(σ, u) = T (B2)(σ, u) =
T.

ST30/51

JJ
II
J
I

Back

Close

Transition System

• Define the set of configurations Stconf as Pe × E .

• Configuration, (P, (σ, u)), is denoted as (P, σ)u, where P is a pro-
cess or E.

• The (E, σ)u is a terminating mark, since no processes execute.

We begin by defining the kind of transition system we will use for
modelling executions of processes.

• A spatial-temporal transition system: a subset → of
Stconf×Stconf.

• An element ((P, σ)u, (P
′, σ′)u′) ∈→: denoted by the notation

(P, σ)u → (P ′, σ′)u′.

ST31/51

JJ
II
J
I

Back

Close

Operational Semantics for STeC
An operational semantics for a computer programming language de-

fines the meaning of programs written in that language in terms of

• how a machine is intended to execute them step by step

• reporting the traces of all the computation steps made during the
executions both in terms of the contents of the shared space and
the moments of execution.

ST32/51

JJ
II
J
I

Back

Close

Operational Semantics for STeC

• Operational Semantics for Stop and Skip

• Since Stop is a non-terminating idle process except for it is inter-
rupted and

• Skip terminates immediately with no effect on the process.

a = l, u = t
(Stop(l,t), σ)u → (Stop(l,t+1), σ)t+1

a = l, u = t
(Skip(l,t), σ)u → (E, σ)u

ST33/51

JJ
II
J
I

Back

Close

Operational Semantics for STeC

• Operational Semantics for Action and State

• The execution of action α(δ) consumes δ unit times and status
β(δ) keeps δ unit times.

• After δ unit times, the action α will finish and the status β disap-
pears.

a = l, u = t
(α(l,t)(δ), σ)u → (E, σ)u+δ

a = l, u = t
(β(δ), σ)u → (E, σ)u+δ

ST34/51

JJ
II
J
I

Back

Close

Operational Semantics for STeC

• Operational Semantics for Communication Commands

Interaction commands Send and Get carry out the interaction be-
tween messages. The Send command adds the new message into the
store, Whilst the command Get takes away the message from the store.
Communication commands consumes time when they execute. The
below are their operational semantics.

a = l, u = t
(SendG

(l,t,G′)(m), σ)u → (E, σ ∪ {mG�G′})u+τ(Send)

a = l, u = t
(GetG(l,t,G′)(m), σ ∪ {mG′�G})u → (E, σ)u+τ(Get)

ST35/51

JJ
II
J
I

Back

Close

Operational Semantics for STeC

• Operational Semantics for Sequent Statement

The sequent statement P ; Q is executed in order. Its semantics is
as follows.

(P, σ)u → (E, σ′)u′

(P ; Q, σ)u → (Q, σ′)u′

We can define a more general case to be

(P, σ)u → (P ′, σ′)u′

(P ; Q, σ)u → (P ′; Q, σ′)u′

ST36/51

JJ
II
J
I

Back

Close

Operational Semantics for STeC

• Operational Semantics for Parallel Statement

Parallel statement P || Q at the environment (σ, u) and during the
duration from u to u′ has two cases:

• case 1. P and Q execute individually without the interaction of
each other.

– the parallel statement may change the store.

– the store is the union of stores after executions of P and Q at
the time u′

• Case 2. P and Q has an interaction of message, i.e., one exe-
cutes the Send(m) command and one another does the Get(m)
command.

– the parallel does not change the store at the time u′.

ST37/51

JJ
II
J
I

Back

Close

In order to record the evolution of stores after the execution of par-
allel statement, we define an union operator] of stores as follows.

σ1]σ2 =

 σ, if ∃σandmsuch thatσ1 = σ\{m}, σ2 = σ ∪ {m}

σ1 ∪ σ2, otherwise.

Therefore, we define the operational semantics of parallel statement
as

(P, σ)u → (P ′, σ1)u′ ∧ (Q, σ)u → (Q′, σ2)u′

(P || Q, σ)u → (P ′ || Q′, σ1] σ2)u′

ST38/51

JJ
II
J
I

Back

Close

Operational Semantics for STeC

• Operational Semantics for Nondeterministic Choice

• Nondeterministic choice statement 8i∈I(Bi → Pi) likes only one Pi

if the corresponding guard Bi is true.

• Notice that computing the truth value of guards consumes time
and the truth value of guards is dependent on the environment of
store and time. The store does not change.

• Computing the truth value of Bi will depend directly on the time
of u + τ (B1) + · · · + τ (Bi−1).

• Notation ⊕i
j=1τ (Bj) to denote the sum τ (B1) + · · · + τ (Bi).

• T (Bi)(σ, u + ⊕i−1
j=1τ (Bj)) = T may deduce T (B1)(σ, u) = · · · =

T (Bi−1)(σ, u +⊕i−2
j=1τ (Bj)) = F.

T (Bi)(σ, u +⊕i−1
j=1τ (Bj)) = T

(8i∈I(Bi → Pi), σ)u → (Pi, σ)u+⊕i−1
j=1τ(Bj)

ST39/51

JJ
II
J
I

Back

Close

Operational Semantics for STeC

• Operational Semantics for Timeout Event

• Timeout event statement P Bδ Q will like P ’s behavior before δ
time and then like Q’s behavior after δ time. The δ is an interrupt
command.

• If the execution time of P is less than δ then it immediately likes
Q regardless of the duration δ.

• There exist two cases:

– (1) the execution time τ (P) is more than or equal to δ, and

– (2) τ (P) is less than, but not equal to δ.

(P, σ)u → (P ′, σ′)u′(u
′ ≥ δ)

(P Dδ Q, σ)u → (Q, σ′)u+δ

(P, σ)u → (E, σ′)u′(u
′ < δ)

(P Dδ Q, σ)u → (Q, σ′)u′

ST40/51

JJ
II
J
I

Back

Close

Operational Semantics for STeC

• Operational Semantics of Interrupt Statement

• The interrupt statement P D (8i∈IAi → Qi)(P 6= A) likes P ’s
behavior before the occurrence of interrupt command Ai and then
likes Qi’s behavior after the execution of Ai.

• Since P is not any atomic communication command A, the execu-
tion of P does not change the store σ at any time.

• The execution of Ai depends on the environment (σ, u′) due to the
evolution of the time caused by the execution of P at the initial
environment (σ, u).

• P is still executed when the Ai executes.

(P, σ)u → (P ′, σ)u′ ∧ (Ai, σ)u → (E, σ′)u′ for some i
(P D (8i∈IAi → Qi), σ)u → (Qi, σ

′′)u′
(P 6= A)

ST41/51

JJ
II
J
I

Back

Close

Operational Semantics for STeC
Up to now, we have established the operational semantics of the

language STeC.

ST42/51

JJ
II
J
I

Back

Close

Railroad Crossing Issue
The railroad crossing problem is classical. It states how a train

passes a gate at the railroad crossing safely. So, one requires that the
gate is closed when a train passes.

ST43/51

JJ
II
J
I

Back

Close

Railroad Crossing Issue
A train has three components: four locations, three actions and two

interactions communicating with gate.

• These four locations are denoted as Lappr, Lpass, Lstop, and Lleav.

– Location Lappr is the place that train sends message Appr to
gate, showing that train is coming and going to pass the crossing
point.

– Location Lpass is the place that train receives the message Cross
from gate. If the train receives this message successfully then it
will pass the crossing, else it will immediately stop.

– Location Lstop is the place for train to stop when it does not
receive the message Cross from gate at location Lpass for safety.

– Location Lleav is the place that the train sends message Leav
to gate. After getting this message, the gate may start closing.

ST44/51

JJ
II
J
I

Back

Close

• Those three actions of a train are Approach, Pass and Stop.

– Action Approach(τ (Approach)) states the train continues run-
ning after passing the location Lappr and before reaching the
location Lstop, lasting the τ (Approach) unit times.

– Action Pass(τ (Pass)) states the train will pass the crossing after
receiving the message Cross from gate at location Lpass until
arriving at location Lleav, lasting the τ (Cross) unit times.

– Action Stop(τ (Stop)) commands the train to stop quickly and
stop at location Stop when it fails to get the message Cross from
gate at location Lpass.

• Two interactions are Send and Get for train to communication with
with gate.

ST45/51

JJ
II
J
I

Back

Close

Railroad Crossing Issue
Gate is an intelligent agent. A gate has three states/locations Open,
Closed and Unclosed, two actions Opening and Closing as well as two
interaction commands Send and Get.

• Three States:

– State Open(τ (Open)) says that the gate is open. It may last
the τ (Open) unit times.

∗ The initial state of gate is Open.
∗ After getting the message Appr sent by train at location

Lappr, the gate starts action Closing.

– State Closed(τ (Closed)) says that the gate is closed. It may last
the τ (Closed) unit times.

∗ The gate must be in the state Closed during that train passes
the crossing.

∗ When finishing the action closing in the required unit times,
the gate sends message Cross to train before the train arrives
at location Lpass.

ST46/51

JJ
II
J
I

Back

Close

– State Unclosed(τ (Unclosed) says that the gate is not closed. It
may last τ (Uclosed) unit times.

∗ It is dangerous that the gate is at the status Unclosed when
the train passes the crossing.

∗ When failing the action Closing in the required unit time, the
gate is at the state Unclosed and must send message Noncross
to train before the train arrives at the location Lpass so that
the train stops at location Lstop.

• Two actions are Opening and Closing of gate, defined as follows.

– Action Opening(δ) indicates that the gate opens autonomously
and reaches the state Open within the δ unit times.

– Action Closing(δ) indicates that the gate closed autonomously
and reaches the state Closed within the δ unit times.

• Two interactions of a gate are Send and Get too.

ST47/51

JJ
II
J
I

Back

Close

Railroad Crossing Issue
We specify these two intelligent agents, Train and Gate as two series
of processes written in terms of the language STeC, respectively.

The agent Train is specified as

Run(∞); (Send(Lapp,t,Gate)(Appr) || Approach(Lapp,t)(Γ))B

Get(Lpass,t+Γ,Gate)(Cross) → (Pass(Lpass,t+Γ)(∆);

(Send(Lleav,t+Γ+∆,Gate)(Leav) || Run(Lleav,t+Γ+∆)(∞)))

8

Get(Lpass,t+Γ,Gate)(Noncross) → (Stop(Lpass,t+Γ)(Υ); Wait(Lstop,t+Γ+Υ,Gate)(Cross);

Pass(Lstop,t′)(Ω); (Send(Lleav,t′+Ω,Gate)(Leav) || Run(Lleav,t′+Ω)(∞)))



ST48/51

JJ
II
J
I

Back

Close

Railroad Crossing Issue
The agent Gate is defined as

Open(∞) B (Get(Open,t+τ(SendT),train)(Appr) → Closing(Open,t+θ0)(Π));

(Closed(Closed,t+θ0+Π)(1) → (Send(closed,t+θ1,train)(Cross); (Closed(Closed,t+θ2)(∞)B

(Get(closed,t+θ3),train)(Leav) → Opening(Closed,t+θ4)(ζ)))); Open(∞)

8

(Unclosed(Unclosed,t+θ0+Π)(0) → (Send(Unclosed,t+θ0+Π,train)(Noncross) || Closing(Unclosed,t+θ0+Π)(π))

; (Closed(Closed,t+θ5)(1) → (Send(closed,t+θ5+1,train)(Cross);

(Closed(Closed,t+θ5+1+τ(SendT))(∞) B (Get(Closed,t′+Ω+τ(SendT))(Leav) →

Opening(Closed,t′+Ω+τ(SendT)+τ(GetG))(ζ)))))); Open(∞)


where θ0 = τ (SendT)) + τ (GetG), θ1 = θ0 + Π + 1, θ2 = θ1 +

τ (SendG), θ3 = Γ + ∆ + τ (SendT), θ4 = θ3 + τ (GetG), θ5 = θ0 + Π + π,
and t′ is not known before Train receives the message Cross from Gate,
since the execution time of Wait is not known before it finishes.

ST49/51

JJ
II
J
I

Back

Close

Railroad Crossing Issue
The railroad crossing problem is specified as the parallel agents:

Train || Gate.

Proposition 1: If τ (SendT) + τ (GetG) + τ (Closing) + 1 ≤
τ (Approach), then the crossing issue is safety, i.e., the gate is closed
when the train passes the cross.

Proposition 2: We are supposed that τ (GetG) = n × τ (SendT).

If τ (Send) ≤ τ (Approach)− τ (Closing)− 1

n + 1
, then the crossing issue is

safety.

ST50/51

JJ
II
J
I

Back

Close

Conclusion and Future Work

• This presentation introduced the syntax and operational semantics
of the language STeC stressing the spatial-temporal consistence for
real-time systems based on environments recording the stores of
messages and the time.

• STeC is a kind of location-triggered specification language. It can
be used to describe real-time systems with stressing of locations
such as aircraft and bullet train and such computing system as
distributive system.

• We described the railroad crossing problem as an interaction of
two intelligent agents–train and gate and specify it in terms of this
language STeC.

• We will pay attention on STeC’s denotational semantics and its
application for real-time systems.

51/51

JJ
II
J
I

Back

Close

Thanks!

Merci!

��

