Research in the OASIS project-team:

Designing, programming, and verifying distributed systems

www.inria.fr/oasis

Eric Madelaine

The OASIS team (Apr. 2013)

in Ord yoor

Common team between:

INRIA centre de Sophia Antipolis Méditerranée

I3S Lab { Université de Nice Sophia Antipolis (U.N.S.) CNRS

6 Permanent researchers:

Madelaine E.	CR INRIA	(Dr, Hdr, head)
Henrio L.	CR CNRS	(Dr, Hdr)
Baude F.	Prof. U.N.S.	(Dr, Hdr)
Dalle O.	Ass. Pr. U.N.S.	
Hermenier F.	Ass. Pr. U.N.S.	
Huet F.	Ass. Pr. U.N.S	S .

Caromel D. Prof. UNS (ext. advisor)

10 (software) engineers

5 master interns

9 on-going PhDs

Ínría

OASIS: Research Directions

Ínría

A cut on Theory and Applications of Distributed Components

Grid Component Model (GCM): definition within CoreGrid & GridComp EU (FP6) projects standardization at ETSI (2008 – 2010)

- → GCM : execution model
- Using GCM for autonomicity and for high performance computing
- Formalization and Verification

A Primitive GCM Component handled by a ProActive active object

Ongoing work Multi-active Objects – preliminary ideas

Mono-threaded active objects have limitations:

- Deadlocks
- Inadapted to multicore architecture (no shared memory)

Solutions in the active-object community: JCoBox, JAC, X10

Our proposal, a programming model that mixes local parallelism (with limited shared memory) and distribution with high-level programming constructs

> Challenge:

A programming model addressing highly heterogeneous resources, Multicores, GPUs, clusters, clouds...

Ongoing work Multi-active Objects – Annotation Example

Adapting Active Objects to Multicore Architectures -

Ludovic Henrio, Fabrice Huet, Zsolt István, and Gheorghen Sebestyén - ISPDC 2011

Eric MADELAINE

OASIS

Achievements A component-based support for MPI-like hierarchical applications

E. Mathias, V. Cavé, S. Lanteri, F. Baude "Grid-enabling SPMD Applications through Hierarchical Partitioning and a Component-Based Runtime" – *EuroPAR 2009*

(nría_

Eric MADELAINE OASIS

All-Reduce benchmark

- Competitive overall performances for a Complete SPMD (with collective operations) numerical simulation, compared to MPI on Grids.
- SPMD non-embarrassingly parallel applications on federated Grids & Clouds

E. Mathias, F. Baude "A Component-Based Middleware for Hybrid Grid/Cloud Computing Platforms " – Concurrency and Computation: Practice and Experience, 2012

Achievements

Achievements Autonomic computing support in GCM

- **Generic Framework** for a Monitoring Analysis Planning Execution (MAPE) control loop plugged to GCM components
- Possible personnalisation, e.g. using Jboss Drools for Analysis/Planning

OASIS

C. Ruz, F. Baude, B. Sauvan, "Using Components to Provide a Flexible Adaptation Loop to Component-based SOA Applications" – Int. Journal on Advances in Intelligent Systems, May 2012

Eric MADELAINE

Formalisation and Verification

Machine-assisted Formalisation and Proofs:

Ex. of results for Future update strategies:

- Proved that all strategies are equivalent
- Formalised one strategy in ^{va}

Example of result:

Achievements

- Complete registration: "All Future references are registered during reduction"

Provides generic properties of the models/languages

Strong guide for implementation

Model-checking approach:

Provide tools to prove Behavioural Properties: Deadlock freeness, progress, safety and liveness.

VerCors platform

- MDE-oriented **specification formalisms**
- Abstract semantic models
- State-of-the-art model-checking tools

Specification & Verification environment

Application-specific properties

Achievements

Example: BFT protocol proved safe

A distributed application: the Byzantine Fault Tolerant protocol, for ensuring replicated read/write consistency.

Properties:	
read/write operations	Difficulty:
Proved with 3f+1 proce within a few hours us	Master state explosion by combination of: Data abstraction; Compositional & context dependent modelling:
Estimated brute force st	Distributed model-checking;

R. Ameur-Boulifa, R. Halalai, L. Henrio, and E. Madelaine. "Verifying Safety of Fault-Tolerant Distributed Components - FACS, 2011

Perspectives

Verification of parameterized and dynamic systems.

Architecture Language (ADL) for parameterized topologies; dynamic ADL

- More expressive and closer to the application logics
- Strongly needed for reconfigurable or autonomic applications
- Exploit directly the power of the pNet semantic model

Challenge:

mix model-checking (MC), theorem-proving (TP), and run-time verification (RTV) techniques to master the proof techniques for parameterized and dynamic models:

- Use TP to build higher-level (= smaller) models for MC
- Use TP to prove correctness of abstraction and of generalization
- Use RTV to prove preservation of model properties during system reconfiguration
- ...

Softwares

Proactive (distributed by ActiveEon) (OW2)

- Programming
- Cloud portal: workflow studio, scheduler, resource manager (see http://proactive.inria.fr/pacagrid/)
- http://proactive.inria.fr/

VerCors

- Specification formalisms (Eclipse-based)
- Partial code generation : ADL and java class skeletons
- Bridges to CADP engines
- http://www-sop.inria.fr/oasis/index.php?page=vercors

OSA (INRIAADT)

- Open Simulation Architecture
- Methodology and tools
- http://osa.gforge.inria.fr/

Visibility

ANR: 4
European projects: 3
Industrial contracts: 3
Budget: ~800 Keuros/year

3 associated teams : Shanghai, Santiago de Chili, Ottawa

Main (informal) collaborations: INRIA: Adam, Sardes, Ascola, Convex, Tosca others: U. Pisa, U. Sannio, T.U. Berlin, U. Middlesex, U. of Utah, Charles U. (Prague)

Collaborations

- Associated team
 Other common publication
 Other collaboration
- Other collaboration

OASIS

Eric MADELAINE

Dissemination: Startup company

Current Status:

- → Created November 5th 2007 by Pr. Denis Caromel → Now about 15 employees
 → Now about 15 employees
 → Editor for

and Services around the technology

→ Technology Transfer and Collaboration contracts with INRIA/University of Nice

Merci

Thank You

Eric Madelaine

- Eric.Madelaine@inria.fr
- <u>http://www-sop.inria.fr/members/Eric.Madelaine</u>

Project-team OASIS

• <u>http://www-sop.inria.fr/oasis</u>

